Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA.
Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
Nat Commun. 2019 Jul 30;10(1):3409. doi: 10.1038/s41467-019-11324-4.
Studies on vesicle formation by the Coat Protein I (COPI) complex have contributed to a basic understanding of how vesicular transport is initiated. Phosphatidic acid (PA) and diacylglycerol (DAG) have been found previously to be required for the fission stage of COPI vesicle formation. Here, we find that PA with varying lipid geometry can all promote early fission, but only PA with shortened acyl chains promotes late fission. Moreover, diacylglycerol (DAG) acts after PA in late fission, with this role of DAG also requiring shorter acyl chains. Further highlighting the importance of the short-chain lipid geometry for late fission, we find that shorter forms of PA and DAG promote the vesiculation ability of COPI fission factors. These findings advance a general understanding of how lipid geometry contributes to membrane deformation for vesicle fission, and also how proteins and lipids coordinate their actions in driving this process.
关于衣壳蛋白 I (COPI) 复合物形成小泡的研究,促进了我们对囊泡运输如何启动的基本理解。先前发现,磷酸脂酰肌醇 (PA) 和二酰基甘油 (DAG) 是 COPI 囊泡形成的裂变阶段所必需的。在这里,我们发现不同脂质几何形状的 PA 都可以促进早期裂变,但只有短链酰基的 PA 可以促进晚期裂变。此外,二酰基甘油 (DAG) 在晚期裂变中起作用,而 DAG 的这一作用也需要较短的酰基链。进一步强调短链脂质几何形状对晚期裂变的重要性,我们发现较短形式的 PA 和 DAG 可促进 COPI 裂变因子的囊泡化能力。这些发现促进了我们对脂质几何形状如何促进囊泡裂变的膜变形的一般理解,以及蛋白质和脂质如何协调它们的作用来驱动这一过程。