Suppr超能文献

将家庭结构和人口统计学纳入地方病模型。

Incorporating household structure and demography into models of endemic disease.

机构信息

MathSys CDT, Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK.

Zeeman Institute (SBIDER), University of Warwick, Coventry CV4 7AL, UK.

出版信息

J R Soc Interface. 2019 Aug 30;16(157):20190317. doi: 10.1098/rsif.2019.0317. Epub 2019 Aug 7.

Abstract

The spread of infectious diseases is intimately linked with the strength and type of contact between individuals. Multiple observational and modelling studies have highlighted the importance of two forms of social mixing: age structure, where the likelihood of interaction between two individuals is determined by their ages; and household structure, which recognizes the much stronger contacts and hence transmission potential within the family setting. Age structure has been ubiquitous in predictive models of both endemic and epidemic infections, in part due to the ease of assessing someone's age. By contrast, although household structure is potentially the dominant heterogeneity, it has received less attention, in part due to an absence of the necessary methodology. Here, we develop the modelling framework necessary to predict the behaviour of endemic infections (which necessitates capturing demographic processes) in populations that possess both household and age structure. We compare two childhood infections, with measles-like and mumps-like parameters, and two populations with UK-like and Kenya-like characteristics, which allows us to disentangle the impact of epidemiology and demography. For this high-dimensional model, we predict complex nonlinear dynamics, where the dynamics of within-household outbreaks are tempered by historical waves of infection and the immunity of older individuals.

摘要

传染病的传播与个体之间的接触强度和类型密切相关。多项观察性和建模研究强调了两种社交混合形式的重要性:年龄结构,即两个人之间相互作用的可能性取决于他们的年龄;以及家庭结构,它认识到家庭环境中更强的接触和因此的传播潜力。年龄结构在地方性和流行感染的预测模型中无处不在,部分原因是评估某人年龄的容易程度。相比之下,尽管家庭结构可能是主要的异质性,但它受到的关注较少,部分原因是缺乏必要的方法。在这里,我们开发了必要的建模框架,以预测具有家庭和年龄结构的人群中地方性感染的行为(这需要捕获人口统计过程)。我们比较了两种具有麻疹样和腮腺炎样参数的儿童传染病,以及具有英国和肯尼亚特征的两种人群,这使我们能够区分流行病学和人口统计学的影响。对于这个高维模型,我们预测了复杂的非线性动态,其中家庭内爆发的动态受到历史感染浪潮和老年人免疫力的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d07a/6731502/82c43b84751e/rsif20190317-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验