Suppr超能文献

仿生蛋白聚糖纳米颗粒用于生长因子固定和递送。

Biomimetic proteoglycan nanoparticles for growth factor immobilization and delivery.

机构信息

Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-11155, Tehran, Iran.

Department of Chemical Engineering, Northeastern University, Boston, 02115, USA.

出版信息

Biomater Sci. 2020 Feb 21;8(4):1127-1136. doi: 10.1039/c9bm00668k. Epub 2019 Aug 7.

Abstract

The delivery of growth factors is often challenging due to their short half-life, low stability, and rapid deactivation. In native tissues, the sulfated residual of glycosaminoglycan (GAG) polymer chains of proteoglycans immobilizes growth factors through the proteoglycans'/proteins' complexation with nanoscale organization. These biological assemblies can influence growth factor-cell surface receptor interactions, cell differentiation, cell-cell signaling, and mechanical properties of the tissues. Here, we introduce a facile procedure to prepare novel biomimetic proteoglycan nanocarriers, based on naturally derived polymers, for the immobilization and controlled release of growth factors. We developed polyelectrolyte complex nanoparticles (PCNs) as growth factor nanocarriers, which mimic the dimensions, chemical composition, and growth factor immobilization of proteoglycans in native tissues. PCNs were prepared by a polymer-polymer pair reaction method and characterized for physicochemical properties. Fourier transform infrared spectroscopy (FTIR) analysis indicated that complexation occurred through electrostatic interactions. Transmission electron microscopy (TEM) results showed that the nanocarriers had a diameter of 60 ± 11 nm and 91 ± 33 nm for dermatan sulfate sodium salt-poly-l-lysine (DS-PLL) and gum tragacanth-poly-l-lysine (GT-PLL) complexes, respectively. The colloidal nanoparticles were stable due to their negative zeta potential, i.e.-25 ± 4 mV for DS-PLL and -18 ± 3.5 mV for GT-PLL. Cytocompatibility of PCNs in contact with human bone marrow stromal cells (HS-5) was confirmed through a live/dead assay and metabolic activity measurement. In addition, vascular endothelial growth factor (VEGF) was used to evaluate the ability of PCNs to stabilize growth factors. The capability of PCNs to preserve VEGF activity for up to 21 days was confirmed by analyzing the metabolic and mitogenic characteristics of human umbilical vein endothelial cells (HUVECs). Our results demonstrated the potential applications of these nanoparticles in therapeutic delivery for tissue regeneration applications.

摘要

由于生长因子半衰期短、稳定性低且易失活,因此其递送通常具有挑战性。在天然组织中,糖胺聚糖(GAG)聚合物链的硫酸化残余物通过蛋白聚糖/蛋白质与纳米级组织的复合固定生长因子。这些生物组装可以影响生长因子-细胞表面受体相互作用、细胞分化、细胞间信号传递以及组织的机械性能。在这里,我们介绍了一种基于天然衍生聚合物制备新型仿生蛋白聚糖纳米载体以固定和控制生长因子释放的简便方法。我们开发了聚电解质复合物纳米颗粒(PCN)作为生长因子纳米载体,其模拟了天然组织中蛋白聚糖的尺寸、化学组成和生长因子固定。PCN 通过聚合物-聚合物对反应方法制备,并对其理化性质进行了表征。傅里叶变换红外光谱(FTIR)分析表明,复合物的形成是通过静电相互作用。透射电子显微镜(TEM)结果表明,纳米载体的直径分别为 60 ± 11nm 和 91 ± 33nm,对于硫酸皮肤素钠盐-聚赖氨酸(DS-PLL)和刺槐豆胶-聚赖氨酸(GT-PLL)复合物。由于其负 ζ 电位,胶体纳米颗粒稳定,即 DS-PLL 为-25 ± 4mV,GT-PLL 为-18 ± 3.5mV。通过死活测定和代谢活性测定证实了 PCN 与人骨髓基质细胞(HS-5)接触时的细胞相容性。此外,还使用血管内皮生长因子(VEGF)评估了 PCN 稳定生长因子的能力。通过分析人脐静脉内皮细胞(HUVEC)的代谢和有丝分裂特征,证实了 PCN 能够将 VEGF 活性保持长达 21 天。我们的结果表明,这些纳米颗粒在组织再生应用的治疗性药物输送方面具有潜在的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验