Agence Nationale d'Appui à la performance (ANAP), Paris, France.
Service de médecine interne gériatrique, Hôpital Simone Veil, Blois, France.
PLoS One. 2019 Aug 13;14(8):e0220002. doi: 10.1371/journal.pone.0220002. eCollection 2019.
Older individuals receiving home assistance are at high risk for emergency visits and unplanned hospitalization. Anticipating their health difficulties could prevent these events. This study investigated the effectiveness of an at-home monitoring method using social workers' observations to predict risk for 7- and 14-day emergency department (ED) visits.
This was a prospective cohort study of persons ≥75 years, living at home and receiving assistance from home care aides (HCA) at 6 French facilities. After each home visit, HCAs reported on participants' functional status using a smartphone application that recorded 27 functional items about each participant (e.g., ability to stand, move, eat, mood, loneliness). We recorded ED visits. Finally, we used machine learning techniques (i.e., leveraging random forest predictors) to develop a 7- and 14-day predictive algorithm for the risk of ED visit.
The study included 301 participants, and the HCA made 9,987 observations. Over the mean 10-month follow-up, 97 participants (32%) had at least one ED visit. Modeling techniques identified 9 contributory factors from the longitudinal records of the HCA and developed a predictive algorithm for the risk of ED visit. The predictive performance (i.e., the area under the ROC curve) was 0.70 at 7 days and 0.67 at 14 days.
For frail elders receiving in-home care, information on functional status collected by HCA helps predict the risk of ED visits 7 to 14 days in advance. A survey system for real-time identification of risks could be developed using this exploratory work.
接受家庭援助的老年人有很高的急诊和非计划性住院风险。预测他们的健康困难可以预防这些事件。本研究调查了使用社会工作者观察的家庭监测方法预测 7 天和 14 天内急诊科就诊风险的效果。
这是一项对 6 家法国机构中≥75 岁、居住在家中并接受家庭护理助理(HCA)援助的人员进行的前瞻性队列研究。每次家访后,HCA 使用智能手机应用程序报告参与者的功能状态,该应用程序记录了每个参与者的 27 项功能项目(例如,站立、移动、进食、情绪、孤独)。我们记录了急诊科就诊情况。最后,我们使用机器学习技术(即利用随机森林预测因子)开发了一种 7 天和 14 天预测急诊科就诊风险的算法。
该研究纳入了 301 名参与者,HCA 进行了 9987 次观察。在平均 10 个月的随访期间,97 名参与者(32%)至少有一次急诊科就诊。建模技术从 HCA 的纵向记录中确定了 9 个促成因素,并开发了一种预测急诊科就诊风险的算法。预测性能(即 ROC 曲线下面积)在 7 天时为 0.70,在 14 天时为 0.67。
对于接受家庭护理的虚弱老年人,HCA 收集的功能状态信息有助于预测 7 至 14 天内急诊科就诊的风险。可以使用这项探索性工作开发用于实时识别风险的调查系统。