Department of Electronic Information Engineering, Nanchang University, Nanchang, China.
Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P. R. China.
Magn Reson Med. 2020 Jan;83(1):322-336. doi: 10.1002/mrm.27921. Epub 2019 Aug 20.
Although recent deep learning methodologies have shown promising results in fast MR imaging, how to explore it to learn an explicit prior and leverage it into the observation constraint is still desired.
A denoising autoencoder (DAE) network is leveraged as an explicit prior to address the highly undersampling MR image reconstruction problem. First, inspired by the observation that the prior information learned from high-dimension signals is more effective than that from the low-dimension counterpart in image restoration tasks, we train the network in a multichannel scenario and apply the learned network to single-channel image reconstruction by a variables augmentation technique. Second, because of the fact that multiple implementations of artificial noise generation in DAE favors a better underlying result, we introduce a 2-sigma rule to complement each other for improving the final reconstruction. The whole algorithm is tackled by proximal gradient descent.
Experimental results under varying sampling trajectories and acceleration factors consistently demonstrate the superiority of the enhanced autoencoding priors, in terms of peak signal-to-noise ratio, structural similarity, and high-frequency error norm.
A simple and effective way to incorporate the DAE prior into highly undersampling MR reconstruction is proposed. Once the DAE prior is obtained, it can be applied to the reconstruction tasks with different sampling trajectories and acceleration factors, and achieves superior performance in comparison with state-of-the-art methods.
尽管最近的深度学习方法在快速磁共振成像中显示出了有前景的结果,但如何探索它以学习显式先验并将其应用于观测约束仍然是需要的。
利用去噪自动编码器(DAE)网络作为显式先验来解决高度欠采样磁共振图像重建问题。首先,受从高维信号中学习到的先验信息在图像恢复任务中比从低维对应物中学习到的信息更有效的观察的启发,我们在多通道场景中训练网络,并通过变量增强技术将学习到的网络应用于单通道图像重建。其次,由于 DAE 中人工噪声生成的多种实现有利于更好的基础结果的事实,我们引入了一个 2-标准差规则来相互补充,以提高最终的重建效果。整个算法是通过近端梯度下降来解决的。
在不同的采样轨迹和加速因子下的实验结果一致表明,增强的自动编码先验在峰值信噪比、结构相似性和高频误差范数方面具有优越性。
提出了一种将 DAE 先验纳入高度欠采样磁共振重建的简单而有效的方法。一旦获得 DAE 先验,它就可以应用于具有不同采样轨迹和加速因子的重建任务,并与最先进的方法相比表现出优越的性能。