Shoeb Mohd, Mobin Mohammad, Rauf Mohd Ahmar, Owais Mohammad, Naqvi Alim H
Department of Applied Chemistry, Z. H. College of Engg. & Tech., and Interdisciplinary Nanotechnology Centre (INC), Z. H. College of Engg. & Tech., Aligarh Muslim University, Aligarh 202002 Uttar Pradesh, India.
Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202 002, India.
ACS Omega. 2018 Aug 20;3(8):9431-9440. doi: 10.1021/acsomega.8b00326. eCollection 2018 Aug 31.
Nowadays, the infection caused by the methicillin-resistant (MRSA) and countless different types of bacterial infection cause the death of millions of people worldwide. Thereby, several strategies have explored for the advancement of better and active antimicrobial agents; one of these lies in the form of two-dimensional carbon-based nanocomposites. Herein, we demonstrate the synthesis of the graphene-polyindole (Gr@PIn) nanocomposite and polyindole (PIn) and significantly enhance the proficiency against MRSA strains which are immune to most antibiotics. The synthesized Gr@PIn and PIn have been characterized by the various biophysical techniques, especially X-ray diffraction (XRD), electron microscopy [scanning electron microscopy (SEM) and transmission electron microscopy (TEM)], Fourier transform infrared, Raman, UV-vis spectroscopy, and thermogravimetric analysis. Electron microscopic investigations unveiled the disintegration of bacterial cell wall upon interaction with Gr@PIn. Significantly, the Gr@PIn found to be very potent in the eradication of the MRSA strain with minimal toxicity to the mammalian cells. Assessment of the antibacterial mechanism revealed that the Gr@PIn adhered toward the bacterial surface, irreversibly interrupted the membrane layer structure of the bacteria, eventually penetrated cells, and efficiently impeded protein activity, which inherently turns into bacterial apoptosis in vitro. Moreover, last, the synthesized Gr@PIn efficiently treated the -mediated experimental skin infection in BALB/c mice as well. This work magnifies our comprehending antibacterial mechanism of nonmetallic graphene-based PIn nanocomposite and provides the support to activity anticipation.
如今,耐甲氧西林金黄色葡萄球菌(MRSA)引起的感染以及无数种不同类型的细菌感染导致全球数百万人死亡。因此,人们探索了多种策略来开发更好、更有效的抗菌剂;其中之一是以二维碳基纳米复合材料的形式存在。在此,我们展示了石墨烯 - 聚吲哚(Gr@PIn)纳米复合材料和聚吲哚(PIn)的合成,并显著提高了对大多数抗生素免疫的MRSA菌株的抗菌能力。合成的Gr@PIn和PIn已通过各种生物物理技术进行了表征,特别是X射线衍射(XRD)、电子显微镜[扫描电子显微镜(SEM)和透射电子显微镜(TEM)]、傅里叶变换红外光谱、拉曼光谱、紫外 - 可见光谱和热重分析。电子显微镜研究揭示了与Gr@PIn相互作用后细菌细胞壁的解体。值得注意的是,发现Gr@PIn在根除MRSA菌株方面非常有效,对哺乳动物细胞的毒性最小。对抗菌机制的评估表明,Gr@PIn附着在细菌表面,不可逆地破坏细菌的膜层结构,最终穿透细胞,并有效地阻碍蛋白质活性,这在体外固有地导致细菌凋亡。此外,最后,合成的Gr@PIn也有效地治疗了BALB/c小鼠中由 -介导的实验性皮肤感染。这项工作扩大了我们对基于非金属石墨烯的PIn纳米复合材料抗菌机制的理解,并为活性预测提供了支持。