Suppr超能文献

用于识别急诊科病历中晕厥患者的人工智能算法与自然语言处理

Artificial Intelligence Algorithms and Natural Language Processing for the Recognition of Syncope Patients on Emergency Department Medical Records.

作者信息

Dipaola Franca, Gatti Mauro, Pacetti Veronica, Bottaccioli Anna Giulia, Shiffer Dana, Minonzio Maura, Menè Roberto, Giaj Levra Alessandro, Solbiati Monica, Costantino Giorgio, Anastasio Marco, Sini Elena, Barbic Franca, Brunetta Enrico, Furlan Raffaello

机构信息

Internal Medicine, Humanitas Clinical and Research Center- IRCCS, 20089 Rozzano, Milan, Italy.

Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Milan, Italy.

出版信息

J Clin Med. 2019 Oct 14;8(10):1677. doi: 10.3390/jcm8101677.

Abstract

BACKGROUND

Enrollment of large cohorts of syncope patients from administrative data is crucial for proper risk stratification but is limited by the enormous amount of time required for manual revision of medical records.

AIM

To develop a Natural Language Processing (NLP) algorithm to automatically identify syncope from Emergency Department (ED) electronic medical records (EMRs).

METHODS

De-identified EMRs of all consecutive patients evaluated at Humanitas Research Hospital ED from 1 December 2013 to 31 March 2014 and from 1 December 2015 to 31 March 2016 were manually annotated to identify syncope. Records were combined in a single dataset and classified. The performance of combined multiple NLP feature selectors and classifiers was tested. Primary Outcomes: NLP algorithms' accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and F3 score.

RESULTS

15,098 and 15,222 records from 2013 and 2015 datasets were analyzed. Syncope was present in 571 records. Normalized Gini Index feature selector combined with Support Vector Machines classifier obtained the best F3 value (84.0%), with 92.2% sensitivity and 47.4% positive predictive value. A 96% analysis time reduction was computed, compared with EMRs manual review.

CONCLUSIONS

This artificial intelligence algorithm enabled the automatic identification of a large population of syncope patients using EMRs.

摘要

背景

从管理数据中纳入大量晕厥患者队列对于正确的风险分层至关重要,但受限于手动修订病历所需的大量时间。

目的

开发一种自然语言处理(NLP)算法,以从急诊科(ED)电子病历(EMR)中自动识别晕厥。

方法

对2013年12月1日至2014年3月31日以及2015年12月1日至2016年3月31日在胡马纳塔斯研究医院急诊科接受评估的所有连续患者的去识别化电子病历进行人工标注以识别晕厥。将记录合并到一个数据集中并进行分类。测试了组合多个NLP特征选择器和分类器的性能。主要结果:NLP算法的准确性、敏感性、特异性、阳性预测值、阴性预测值和F3分数。

结果

分析了2013年和2015年数据集的15098条和15222条记录。571条记录中存在晕厥。归一化基尼指数特征选择器与支持向量机分类器相结合获得了最佳F3值(84.0%),敏感性为92.2%,阳性预测值为47.4%。与EMR人工审查相比,计算得出分析时间减少了96%。

结论

这种人工智能算法能够使用EMR自动识别大量晕厥患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9726/6832155/de6363143fa7/jcm-08-01677-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验