Suppr超能文献

经颅直流电刺激优化——从基于物理的计算机模拟到高保真头部模型制作与测量

Transcranial Direct Current Stimulation Optimization - From Physics-Based Computer Simulations to High-Fidelity Head Phantom Fabrication and Measurements.

作者信息

Morales-Quezada Leon, El-Hagrassy Mirret M, Costa Beatriz, McKinley R Andy, Lv Pengcheng, Fregni Felipe

机构信息

Department of Physical Medicine and Rehabilitation, Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States.

Air Force Research Laboratory, United States Air Force, Wright-Patterson AFB, Dayton, OH, United States.

出版信息

Front Hum Neurosci. 2019 Oct 31;13:388. doi: 10.3389/fnhum.2019.00388. eCollection 2019.

Abstract

BACKGROUND

Transcranial direct current stimulation (tDCS) modulates neural networks. Computer simulations, while used to identify how currents behave within tissues of different conductivity properties, still need to be complemented by physical models.

OBJECTIVE/HYPOTHESIS: To better understand tDCS effects on biology-mimicking tissues by developing and testing the feasibility of a high-fidelity 3D head phantom model that has sensing capabilities at different compartmental levels.

METHODS

Models obtained from MRI images generated 3D printed molds. Agar phantoms were fabricated, and 18 monitoring electrodes were placed on specific phantom brain areas.

RESULTS

When using rectangular electrodes, the measured and simulated voltages at the monitoring electrodes agreed reasonably well, except at excitation locations. The electric field distribution in different phantom layers appeared better confined with circular electrodes compared to rectangular electrodes.

CONCLUSION

The high-fidelity 3D head model was found to be feasible and comparable with computer-based electrical simulations, with high correlation between simulated and measured brain voltages. This feasibility study supports testing to further assess the reliability of this model.

摘要

背景

经颅直流电刺激(tDCS)可调节神经网络。计算机模拟虽用于确定电流在不同电导率特性组织内的行为,但仍需物理模型加以补充。

目的/假设:通过开发并测试一种在不同分区水平具有传感能力的高保真3D头部模型的可行性,以更好地理解tDCS对生物模拟组织的影响。

方法

从MRI图像获取的模型生成3D打印模具。制作琼脂模型,并在特定的模型脑区放置18个监测电极。

结果

使用矩形电极时,监测电极处的测量电压与模拟电压除在激励位置外基本吻合。与矩形电极相比,圆形电极在不同模型层中的电场分布似乎更局限。

结论

发现高保真3D头部模型可行,且与基于计算机的电模拟相当,模拟脑电压与测量脑电压之间具有高度相关性。这项可行性研究支持进行测试以进一步评估该模型的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/883d/6837166/2e62498dc61b/fnhum-13-00388-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验