Suppr超能文献

基于机器学习的智能手机眼压计的研发与验证。

Development and validation of a machine learning, smartphone-based tonometer.

机构信息

Ophthalmology, University of Washington, Seattle, Washington, USA.

University of Washington, Seattle, Washington, USA.

出版信息

Br J Ophthalmol. 2020 Oct;104(10):1394-1398. doi: 10.1136/bjophthalmol-2019-315446. Epub 2019 Dec 23.

Abstract

BACKGROUND/AIMS: To compare intraocular pressure (IOP) measurements using a prototype smartphone tonometer with other tonometers used in clinical practice.

METHODS

Patients from an academic glaucoma practice were recruited. The smartphone tonometer uses fixed force applanation and in conjunction with a machine-learning computer algorithm is able to calculate the IOP. IOP was also measured using Goldmann applanation tonometry (GAT) in all subjects. A subset of patients were also measured using ICare, pneumotonometry (upright and supine positions) and Tono-Pen (upright and supine positions) and the results were compared.

RESULTS

92 eyes of 81 subjects were successfully measured. The mean difference (in mm Hg) for IOP measurements of the smartphone tonometer versus other devices was +0.24 mm Hg for GAT, -1.39 mm Hg for ICare, -3.71 mm Hg for pneumotonometry and -1.30 mm Hg for Tono-Pen. The 95% limits of agreement for the smartphone tonometer versus other devices was -4.35 to 4.83 mm Hg for GAT, -6.48 to 3.70 mm Hg for ICare, -7.66 to -0.15 mm Hg for pneumotonometry and -5.72 to 3.12 mm Hg for Tono-Pen. Overall, the smartphone tonometer results correlated best with GAT (R=0.67, p<0.001). Of the 92 videos, 90 (97.8%) were within ±5 mm Hg of GAT and 58 (63.0%) were within ±2 mm Hg of GAT.

CONCLUSIONS

Preliminary IOP measurements using a prototype smartphone-based tonometer was grossly equivalent to the reference standard.

摘要

背景/目的:比较原型智能手机眼压计与临床实践中使用的其他眼压计测量的眼压(IOP)。

方法

从学术青光眼实践中招募患者。智能手机眼压计使用固定力压平,并结合机器学习计算机算法,能够计算 IOP。所有受试者均使用 Goldmann 压平眼压计(GAT)测量 IOP。部分患者还使用 ICare、气动眼压计(仰卧和仰卧位)和 Tono-Pen(仰卧和仰卧位)进行测量,并比较结果。

结果

成功测量了 81 名受试者的 92 只眼。智能手机眼压计与其他设备的 IOP 测量值之间的平均差值(mmHg)分别为 GAT 为+0.24mmHg、ICare 为-1.39mmHg、气动眼压计为-3.71mmHg 和 Tono-Pen 为-1.30mmHg。智能手机眼压计与其他设备的 95%一致性界限分别为 GAT 为-4.35 至 4.83mmHg、ICare 为-6.48 至 3.70mmHg、气动眼压计为-7.66 至-0.15mmHg 和 Tono-Pen 为-5.72 至 3.12mmHg。总体而言,智能手机眼压计与 GAT 的相关性最好(R=0.67,p<0.001)。在 92 个视频中,90 个(97.8%)在 GAT 的±5mmHg 以内,58 个(63.0%)在 GAT 的±2mmHg 以内。

结论

使用原型基于智能手机的眼压计进行初步 IOP 测量与参考标准大致相当。

相似文献

1
Development and validation of a machine learning, smartphone-based tonometer.
Br J Ophthalmol. 2020 Oct;104(10):1394-1398. doi: 10.1136/bjophthalmol-2019-315446. Epub 2019 Dec 23.
6
Comparison of the Icare ic100 Rebound Tonometer and the Goldmann Applanation Tonometer in 1,000 Eyes.
Ophthalmic Res. 2021;64(2):321-326. doi: 10.1159/000511455. Epub 2020 Sep 9.
8
Intraocular pressure in children: the effect of body position as assessed by Icare and Tono-Pen tonometers.
Am J Ophthalmol. 2014 Dec;158(6):1348-1352.e1. doi: 10.1016/j.ajo.2014.09.009. Epub 2014 Sep 8.
9
Evaluation of a New Rebound Self-tonometer, Icare HOME: Comparison With Goldmann Applanation Tonometer.
J Glaucoma. 2017 Jul;26(7):613-618. doi: 10.1097/IJG.0000000000000674.
10
Clinical use of a new position-independent rebound tonometer.
J Glaucoma. 2013 Dec;22(9):763-7. doi: 10.1097/IJG.0b013e318259aa47.

引用本文的文献

1
Artificial intelligence in the anterior segment of eye diseases.
Int J Ophthalmol. 2024 Sep 18;17(9):1743-1751. doi: 10.18240/ijo.2024.09.23. eCollection 2024.
2
Non-contact tonometry: predicting intraocular pressure using a material-corneal thickness-independent methodology.
Front Bioeng Biotechnol. 2024 Jul 25;12:1406870. doi: 10.3389/fbioe.2024.1406870. eCollection 2024.
3
Integration of smartphone technology and artificial intelligence for advanced ophthalmic care: A systematic review.
Adv Ophthalmol Pract Res. 2024 Mar 25;4(3):120-127. doi: 10.1016/j.aopr.2024.03.003. eCollection 2024 Aug-Sep.
4
The Role of Ophthalmology in Tele-Stroke Consults for Triaging Acute Vision Loss.
Open Access Emerg Med. 2024 Feb 5;16:45-56. doi: 10.2147/OAEM.S395588. eCollection 2024.
5
Assessing Agreement and Variability Among Alternative Devices for Intraocular Pressure Measurement: A Comparative Study.
Clin Ophthalmol. 2023 Nov 15;17:3453-3461. doi: 10.2147/OPTH.S438358. eCollection 2023.
6
Chronic Kidney Disease as a Cardiovascular Disorder-Tonometry Data Analyses.
Int J Environ Res Public Health. 2022 Sep 28;19(19):12339. doi: 10.3390/ijerph191912339.
7
[Is home perimetry possible?].
Arch Soc Esp Oftalmol. 2021 Jun;96(6):285-287. doi: 10.1016/j.oftal.2021.04.001. Epub 2021 May 15.
8
Model-to-Data Approach for Deep Learning in Optical Coherence Tomography Intraretinal Fluid Segmentation.
JAMA Ophthalmol. 2020 Oct 1;138(10):1017-1024. doi: 10.1001/jamaophthalmol.2020.2769.
9
Using Deep Learning to Automate Goldmann Applanation Tonometry Readings.
Ophthalmology. 2020 Nov;127(11):1498-1506. doi: 10.1016/j.ophtha.2020.04.033. Epub 2020 Apr 25.

本文引用的文献

2
Sensitivity and Specificity of Smartphone-Based Retinal Imaging for Diabetic Retinopathy: A Comparative Study.
Ophthalmol Retina. 2019 Feb;3(2):146-153. doi: 10.1016/j.oret.2018.09.016. Epub 2018 Sep 28.
4
Training time and quality of smartphone-based anterior segment screening in rural India.
Clin Ophthalmol. 2017 Jul 14;11:1301-1307. doi: 10.2147/OPTH.S134656. eCollection 2017.
6
A novel smartphone ophthalmic imaging adapter: User feasibility studies in Hyderabad, India.
Indian J Ophthalmol. 2016 Mar;64(3):191-200. doi: 10.4103/0301-4738.181742.
7
Visual acuity measured with a smartphone app is more accurate than Snellen testing by emergency department providers.
Graefes Arch Clin Exp Ophthalmol. 2016 Jun;254(6):1175-80. doi: 10.1007/s00417-016-3291-4. Epub 2016 Mar 1.
8
Clinical Validation of a Smartphone-Based Adapter for Optic Disc Imaging in Kenya.
JAMA Ophthalmol. 2016 Feb;134(2):151-8. doi: 10.1001/jamaophthalmol.2015.4625.
9
Validation of Smartphone Based Retinal Photography for Diabetic Retinopathy Screening.
PLoS One. 2015 Sep 24;10(9):e0138285. doi: 10.1371/journal.pone.0138285. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验