Department of Parasitology, Faculty of Science, BIOCEV, Charles University, 25242 Vestec, Czech Republic.
Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic.
Proc Natl Acad Sci U S A. 2020 Jan 28;117(4):2065-2075. doi: 10.1073/pnas.1909755117. Epub 2020 Jan 13.
The adaptation of eukaryotic cells to anaerobic conditions is reflected by substantial changes to mitochondrial metabolism and functional reduction. Hydrogenosomes belong among the most modified mitochondrial derivative and generate molecular hydrogen concomitant with ATP synthesis. The reduction of mitochondria is frequently associated with loss of peroxisomes, which compartmentalize pathways that generate reactive oxygen species (ROS) and thus protect against cellular damage. The biogenesis and function of peroxisomes are tightly coupled with mitochondria. These organelles share fission machinery components, oxidative metabolism pathways, ROS scavenging activities, and some metabolites. The loss of peroxisomes in eukaryotes with reduced mitochondria is thus not unexpected. Surprisingly, we identified peroxisomes in the anaerobic, hydrogenosome-bearing protist We found a conserved set of peroxin (Pex) proteins that are required for protein import, peroxisomal growth, and division. Key membrane-associated Pexs (Pex3, Pex11, and Pex14) were visualized in numerous vesicles distinct from hydrogenosomes, the endoplasmic reticulum (ER), and Golgi complex. Proteomic analysis of cellular fractions and prediction of peroxisomal targeting signals (PTS1/PTS2) identified 51 putative peroxisomal matrix proteins. Expression of selected proteins in revealed specific targeting to peroxisomes. The matrix proteins identified included components of acyl-CoA and carbohydrate metabolism and pyrimidine and CoA biosynthesis, whereas no components related to either β-oxidation or catalase were present. In conclusion, we identified a subclass of peroxisomes, named "anaerobic" peroxisomes that shift the current paradigm and turn attention to the reductive evolution of peroxisomes in anaerobic organisms.
真核细胞对厌氧条件的适应反映在线粒体代谢和功能的实质性变化上。氢体属于最受修饰的线粒体衍生物之一,可在合成 ATP 的同时产生氢气。线粒体的减少通常与过氧化物酶体的丧失有关,而过氧化物酶体可分隔产生活性氧 (ROS) 的途径,从而防止细胞损伤。过氧化物酶体的生物发生和功能与线粒体紧密相关。这些细胞器共享分裂机制成分、氧化代谢途径、ROS 清除活性和一些代谢物。因此,在具有减少的线粒体的真核生物中失去过氧化物酶体并不意外。令人惊讶的是,我们在厌氧、产氢体原生生物中发现了过氧化物酶体。我们发现了一组保守的过氧化物酶体蛋白 (Pex),它们是蛋白质导入、过氧化物酶体生长和分裂所必需的。关键的膜相关 Pexs(Pex3、Pex11 和 Pex14)在许多与氢体、内质网 (ER) 和高尔基体不同的小泡中被可视化。对细胞部分的蛋白质组学分析和过氧化物酶体靶向信号 (PTS1/PTS2) 的预测鉴定了 51 种潜在的过氧化物酶体基质蛋白。在 中表达选定的蛋白质表明其特异性靶向过氧化物酶体。鉴定的基质蛋白包括酰基辅酶 A 和碳水化合物代谢以及嘧啶和 CoA 生物合成的成分,而不存在与β-氧化或过氧化氢酶相关的成分。总之,我们鉴定了一类过氧化物酶体,命名为“厌氧”过氧化物酶体,这一发现改变了当前的范式,使人们关注厌氧生物中过氧化物酶体的还原性进化。