Ahn Euijoon, Kumar Ashnil, Fulham Michael, Feng Dagan, Kim Jinman
IEEE Trans Med Imaging. 2020 Jul;39(7):2385-2394. doi: 10.1109/TMI.2020.2971258. Epub 2020 Feb 3.
The accuracy and robustness of image classification with supervised deep learning are dependent on the availability of large-scale labelled training data. In medical imaging, these large labelled datasets are sparse, mainly related to the complexity in manual annotation. Deep convolutional neural networks (CNNs), with transferable knowledge, have been employed as a solution to limited annotated data through: 1) fine-tuning generic knowledge with a relatively smaller amount of labelled medical imaging data, and 2) learning image representation that is invariant to different domains. These approaches, however, are still reliant on labelled medical image data. Our aim is to use a new hierarchical unsupervised feature extractor to reduce reliance on annotated training data. Our unsupervised approach uses a multi-layer zero-bias convolutional auto-encoder that constrains the transformation of generic features from a pre-trained CNN (for natural images) to non-redundant and locally relevant features for the medical image data. We also propose a context-based feature augmentation scheme to improve the discriminative power of the feature representation. We evaluated our approach on 3 public medical image datasets and compared it to other state-of-the-art supervised CNNs. Our unsupervised approach achieved better accuracy when compared to other conventional unsupervised methods and baseline fine-tuned CNNs.
使用有监督深度学习进行图像分类的准确性和稳健性取决于大规模标注训练数据的可用性。在医学成像中,这些大规模标注数据集很稀少,主要与手动标注的复杂性有关。具有可迁移知识的深度卷积神经网络(CNN)已被用作解决标注数据有限问题的一种方法,具体方式如下:1)使用相对较少的标注医学成像数据对通用知识进行微调;2)学习对不同领域具有不变性的图像表示。然而,这些方法仍然依赖于标注的医学图像数据。我们的目标是使用一种新的分层无监督特征提取器来减少对标注训练数据的依赖。我们的无监督方法使用多层零偏差卷积自动编码器,该编码器将预训练CNN(用于自然图像)的通用特征转换为医学图像数据的非冗余且局部相关的特征。我们还提出了一种基于上下文的特征增强方案,以提高特征表示的判别能力。我们在3个公共医学图像数据集上评估了我们的方法,并将其与其他最先进的有监督CNN进行了比较。与其他传统无监督方法和基线微调CNN相比,我们的无监督方法取得了更好的准确率。