Suppr超能文献

SuperFreq:癌症中的综合突变检测和克隆追踪。

SuperFreq: Integrated mutation detection and clonal tracking in cancer.

机构信息

Division of Cancer and Haematology, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.

Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.

出版信息

PLoS Comput Biol. 2020 Feb 13;16(2):e1007603. doi: 10.1371/journal.pcbi.1007603. eCollection 2020 Feb.

Abstract

Analysing multiple cancer samples from an individual patient can provide insight into the way the disease evolves. Monitoring the expansion and contraction of distinct clones helps to reveal the mutations that initiate the disease and those that drive progression. Existing approaches for clonal tracking from sequencing data typically require the user to combine multiple tools that are not purpose-built for this task. Furthermore, most methods require a matched normal (non-tumour) sample, which limits the scope of application. We developed SuperFreq, a cancer exome sequencing analysis pipeline that integrates identification of somatic single nucleotide variants (SNVs) and copy number alterations (CNAs) and clonal tracking for both. SuperFreq does not require a matched normal and instead relies on unrelated controls. When analysing multiple samples from a single patient, SuperFreq cross checks variant calls to improve clonal tracking, which helps to separate somatic from germline variants, and to resolve overlapping CNA calls. To demonstrate our software we analysed 304 cancer-normal exome samples across 33 cancer types in The Cancer Genome Atlas (TCGA) and evaluated the quality of the SNV and CNA calls. We simulated clonal evolution through in silico mixing of cancer and normal samples in known proportion. We found that SuperFreq identified 93% of clones with a cellular fraction of at least 50% and mutations were assigned to the correct clone with high recall and precision. In addition, SuperFreq maintained a similar level of performance for most aspects of the analysis when run without a matched normal. SuperFreq is highly versatile and can be applied in many different experimental settings for the analysis of exomes and other capture libraries. We demonstrate an application of SuperFreq to leukaemia patients with diagnosis and relapse samples.

摘要

对个体患者的多个癌症样本进行分析,可以深入了解疾病的发展方式。监测不同克隆的扩增和收缩有助于揭示启动疾病的突变和推动疾病进展的突变。现有的基于测序数据的克隆追踪方法通常需要用户结合多个并非专门为此任务设计的工具。此外,大多数方法都需要匹配的正常(非肿瘤)样本,这限制了其应用范围。我们开发了 SuperFreq,这是一种癌症外显子组测序分析管道,可同时识别体细胞单核苷酸变异 (SNV) 和拷贝数改变 (CNA) 并进行克隆追踪。SuperFreq 不需要匹配的正常样本,而是依赖于无关的对照。在分析来自单个患者的多个样本时,SuperFreq 会交叉检查变异调用,以改善克隆追踪,这有助于区分体细胞和种系变体,并解决重叠的 CNA 调用。为了展示我们的软件,我们分析了来自癌症基因组图谱 (TCGA) 中 33 种癌症类型的 304 个癌症-正常外显子样本,并评估了 SNV 和 CNA 调用的质量。我们通过在已知比例下混合癌症和正常样本进行了模拟克隆进化。我们发现,SuperFreq 以高召回率和准确率识别了至少 50%细胞分数的 93%的克隆,并且将突变分配给了正确的克隆。此外,在没有匹配的正常样本的情况下运行时,SuperFreq 在分析的大多数方面都保持了类似的性能水平。SuperFreq 非常通用,可以应用于外显子组和其他捕获文库的许多不同实验设置。我们展示了 SuperFreq 在白血病患者诊断和复发样本中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0544/7043783/f58bb917c20d/pcbi.1007603.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验