Suppr超能文献

通过动觉好奇心形成的知识网络的增长与形态。

The growth and form of knowledge networks by kinesthetic curiosity.

作者信息

Zhou Dale, Lydon-Staley David M, Zurn Perry, Bassett Danielle S

机构信息

Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania.

出版信息

Curr Opin Behav Sci. 2020 Oct;35:125-134. doi: 10.1016/j.cobeha.2020.09.007. Epub 2020 Oct 22.

Abstract

Throughout life, we might seek a calling, companions, skills, entertainment, truth, self-knowledge, beauty, and edification. The practice of curiosity can be viewed as an extended and open-ended search for valuable information with hidden identity and location in a complex space of interconnected information. Despite its importance, curiosity has been challenging to computationally model because the practice of curiosity often flourishes without specific goals, external reward, or immediate feedback. Here, we show how network science, statistical physics, and philosophy can be integrated into an approach that coheres with and expands the psychological taxonomies of specific-diversive and perceptual-epistemic curiosity. Using this interdisciplinary approach, we distill functional modes of curious information seeking as searching movements in information space. The kinesthetic model of curiosity offers a vibrant counterpart to the deliberative predictions of model-based reinforcement learning. In doing so, this model unearths new computational opportunities for identifying what makes curiosity curious.

摘要

在一生中,我们可能会追寻使命、伴侣、技能、娱乐、真理、自我认知、美和启迪。好奇心的实践可以被视为在一个相互关联的复杂信息空间中,对具有隐藏身份和位置的有价值信息进行的广泛且无特定终点的探索。尽管好奇心很重要,但由于好奇心的实践往往在没有特定目标、外部奖励或即时反馈的情况下蓬勃发展,因此对其进行计算建模一直具有挑战性。在这里,我们展示了如何将网络科学、统计物理学和哲学整合到一种与特定多样性和感知认知好奇心的心理学分类法相一致并加以扩展的方法中。使用这种跨学科方法,我们将好奇信息搜索的功能模式提炼为信息空间中的搜索运动。好奇心的动觉模型为基于模型的强化学习的深思熟虑预测提供了一个充满活力的对应物。通过这样做,该模型挖掘出了新的计算机会,以确定使好奇心变得好奇的因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd40/8330694/bc1af8b4464e/nihms-1683568-f0001.jpg

相似文献

1
The growth and form of knowledge networks by kinesthetic curiosity.通过动觉好奇心形成的知识网络的增长与形态。
Curr Opin Behav Sci. 2020 Oct;35:125-134. doi: 10.1016/j.cobeha.2020.09.007. Epub 2020 Oct 22.
4
A functional approach to explanation-seeking curiosity.一种寻求解释的好奇心的功能主义方法。
Cogn Psychol. 2020 Jun;119:101276. doi: 10.1016/j.cogpsych.2020.101276. Epub 2020 Feb 12.
5
Network architectures supporting learnability.支持可学习性的网络架构。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190323. doi: 10.1098/rstb.2019.0323. Epub 2020 Feb 24.
10
Latent learning, cognitive maps, and curiosity.潜伏学习、认知地图与好奇心。
Curr Opin Behav Sci. 2021 Apr;38:1-7. doi: 10.1016/j.cobeha.2020.06.003. Epub 2020 Jul 17.

引用本文的文献

本文引用的文献

1
Efficient coding in the economics of human brain connectomics.人类脑连接组学经济学中的高效编码
Netw Neurosci. 2022 Feb 1;6(1):234-274. doi: 10.1162/netn_a_00223. eCollection 2022 Feb.
2
Learning Structures: Predictive Representations, Replay, and Generalization.学习结构:预测性表征、回放与泛化。
Curr Opin Behav Sci. 2020 Apr;32:155-166. doi: 10.1016/j.cobeha.2020.02.017. Epub 2020 May 5.
4
How humans learn and represent networks.人类如何学习和表示网络。
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29407-29415. doi: 10.1073/pnas.1912328117.
5
How to optimize knowledge construction in the brain.如何优化大脑中的知识构建。
NPJ Sci Learn. 2020 May 1;5:5. doi: 10.1038/s41539-020-0064-y. eCollection 2020.
9
Measuring the predictability of life outcomes with a scientific mass collaboration.利用科学大众协作来衡量生命结局的可预测性。
Proc Natl Acad Sci U S A. 2020 Apr 14;117(15):8398-8403. doi: 10.1073/pnas.1915006117. Epub 2020 Mar 30.
10
Network architectures supporting learnability.支持可学习性的网络架构。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190323. doi: 10.1098/rstb.2019.0323. Epub 2020 Feb 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验