Zhou Dale, Lydon-Staley David M, Zurn Perry, Bassett Danielle S
Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania.
Curr Opin Behav Sci. 2020 Oct;35:125-134. doi: 10.1016/j.cobeha.2020.09.007. Epub 2020 Oct 22.
Throughout life, we might seek a calling, companions, skills, entertainment, truth, self-knowledge, beauty, and edification. The practice of curiosity can be viewed as an extended and open-ended search for valuable information with hidden identity and location in a complex space of interconnected information. Despite its importance, curiosity has been challenging to computationally model because the practice of curiosity often flourishes without specific goals, external reward, or immediate feedback. Here, we show how network science, statistical physics, and philosophy can be integrated into an approach that coheres with and expands the psychological taxonomies of specific-diversive and perceptual-epistemic curiosity. Using this interdisciplinary approach, we distill functional modes of curious information seeking as searching movements in information space. The kinesthetic model of curiosity offers a vibrant counterpart to the deliberative predictions of model-based reinforcement learning. In doing so, this model unearths new computational opportunities for identifying what makes curiosity curious.
在一生中,我们可能会追寻使命、伴侣、技能、娱乐、真理、自我认知、美和启迪。好奇心的实践可以被视为在一个相互关联的复杂信息空间中,对具有隐藏身份和位置的有价值信息进行的广泛且无特定终点的探索。尽管好奇心很重要,但由于好奇心的实践往往在没有特定目标、外部奖励或即时反馈的情况下蓬勃发展,因此对其进行计算建模一直具有挑战性。在这里,我们展示了如何将网络科学、统计物理学和哲学整合到一种与特定多样性和感知认知好奇心的心理学分类法相一致并加以扩展的方法中。使用这种跨学科方法,我们将好奇信息搜索的功能模式提炼为信息空间中的搜索运动。好奇心的动觉模型为基于模型的强化学习的深思熟虑预测提供了一个充满活力的对应物。通过这样做,该模型挖掘出了新的计算机会,以确定使好奇心变得好奇的因素。