Pinals Rebecca L, Chio Linda, Ledesma Francis, Landry Markita P
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, USA.
Analyst. 2020 Aug 7;145(15):5090-5112. doi: 10.1039/d0an00633e. Epub 2020 Jul 1.
Unpredictable and uncontrollable protein adsorption on nanoparticles remains a considerable challenge to achieving effective application of nanotechnologies within biological environments. Nevertheless, engineered nanoparticles offer unprecedented functionality and control in probing and altering biological systems. In this review, we highlight recent advances in harnessing the "protein corona" formed on nanoparticles as a handle to tune functional properties of the protein-nanoparticle complex. Towards this end, we first review nanoparticle properties that influence protein adsorption and design strategies to facilitate selective corona formation, with the corresponding characterization techniques. We next focus on literature detailing corona-mediated functionalities, including stealth to avoid recognition and sequestration while in circulation, targeting of predetermined in vivo locations, and controlled activation once localized to the intended biological compartment. We conclude with a discussion of biocompatibility outcomes for these protein-nanoparticle complexes applied in vivo. While formation of the nanoparticle-corona complex may impede our control over its use for the projected nanobiotechnology application, it concurrently presents an opportunity to create improved protein-nanoparticle architectures by exploiting natural or guiding selective protein adsorption to the nanoparticle surface.
纳米颗粒上不可预测且无法控制的蛋白质吸附,仍然是在生物环境中有效应用纳米技术面临的重大挑战。尽管如此,工程化纳米颗粒在探测和改变生物系统方面提供了前所未有的功能和控制能力。在本综述中,我们重点介绍了利用纳米颗粒上形成的“蛋白质冠层”作为调节蛋白质 - 纳米颗粒复合物功能特性的手段的最新进展。为此,我们首先回顾影响蛋白质吸附的纳米颗粒特性以及促进选择性冠层形成的设计策略,并介绍相应的表征技术。接下来,我们重点关注详细阐述冠层介导功能的文献,包括在循环中避免识别和隔离的隐身功能、靶向体内预定位置以及一旦定位到预期生物隔室后的可控激活。我们最后讨论了这些蛋白质 - 纳米颗粒复合物在体内应用的生物相容性结果。虽然纳米颗粒 - 冠层复合物的形成可能会阻碍我们对其用于预期纳米生物技术应用的控制,但它同时也提供了一个机会,即通过利用自然或引导选择性蛋白质吸附到纳米颗粒表面来创建改进的蛋白质 - 纳米颗粒结构。