Seldin Marcus, Yang Xia, Lusis Aldons J
Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, USA.
Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
Nat Metab. 2019 Nov;1(11):1038-1050. doi: 10.1038/s42255-019-0132-x. Epub 2019 Oct 21.
The common forms of metabolic diseases are highly complex, involving hundreds of genes, environmental and lifestyle factors, age-related changes, sex differences and gut-microbiome interactions. Systems genetics is a population-based approach to address this complexity. In contrast to commonly used 'reductionist' approaches, such as gain or loss of function, that examine one element at a time, systems genetics uses high-throughput 'omics' technologies to quantitatively assess the many molecular differences among individuals in a population and then to relate these to physiologic functions or disease states. Unlike genome-wide association studies, systems genetics seeks to go beyond the identification of disease-causing genes to understand higher-order interactions at the molecular level. The purpose of this review is to introduce the systems genetics applications in the areas of metabolic and cardiovascular disease. Here, we explain how large clinical and omics-level data and databases from both human and animal populations are available to help researchers place genes in the context of pathways and networks and formulate hypotheses that can then be experimentally examined. We provide lists of such databases and examples of the integration of reductionist and systems genetics data. Among the important applications emerging is the development of improved nutritional and pharmacological strategies to address the rise of metabolic diseases.
代谢疾病的常见形式极为复杂,涉及数百个基因、环境和生活方式因素、与年龄相关的变化、性别差异以及肠道微生物群相互作用。系统遗传学是一种基于群体的方法,用于应对这种复杂性。与常用的“还原论”方法(如功能获得或丧失,每次只研究一个元素)不同,系统遗传学使用高通量“组学”技术来定量评估群体中个体之间的许多分子差异,然后将这些差异与生理功能或疾病状态联系起来。与全基因组关联研究不同,系统遗传学旨在超越致病基因的识别,以了解分子水平上的高阶相互作用。本综述的目的是介绍系统遗传学在代谢和心血管疾病领域的应用。在这里,我们解释了来自人类和动物群体的大型临床和组学水平数据及数据库如何可用于帮助研究人员将基因置于通路和网络的背景下,并形成可随后进行实验检验的假设。我们提供了此类数据库的列表以及还原论和系统遗传学数据整合的示例。正在出现的重要应用之一是开发改进的营养和药理学策略,以应对代谢疾病的增加。