Suppr超能文献

空间自相关和采样设计对保护区有效性估计的影响。

Effects of spatial autocorrelation and sampling design on estimates of protected area effectiveness.

机构信息

School of Earth and Environmental Sciences, The University of Queensland, Brisbane, Qld 4072, Australia.

Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, Qld 4072, Australia.

出版信息

Conserv Biol. 2020 Dec;34(6):1452-1462. doi: 10.1111/cobi.13522. Epub 2020 Aug 13.

Abstract

Estimating the effectiveness of protected areas (PAs) in reducing deforestation is useful to support decisions on whether to invest in better management of areas already protected or to create new ones. Statistical matching is commonly used to assess this effectiveness, but spatial autocorrelation and regional differences in protection effectiveness are frequently overlooked. Using Colombia as a case study, we employed statistical matching to account for confounding factors in park location and accounted for for spatial autocorrelation to determine statistical significance. We compared the performance of different matching procedures-ways of generating matching pairs at different scales-in estimating PA effectiveness. Differences in matching procedures affected covariate similarity between matched pairs (balance) and estimates of PA effectiveness in reducing deforestation. Independent matching yielded the greatest balance. On average 95% of variables in each region were balanced with independent matching, whereas 33% of variables were balanced when using the method that performed worst. The best estimates suggested that average deforestation inside protected areas in Colombia was 40% lower than in matched sites. Protection significantly reduced deforestation, but PA effectiveness differed among regions. Protected areas in Caribe were the most effective, whereas those in Orinoco and Pacific were least effective. Our results demonstrate that accounting for spatial autocorrelation and using independent matching for each subset of data is needed to infer the effectiveness of protection in reducing deforestation. Not accounting for spatial autocorrelation can distort the assessment of protection effectiveness, increasing type I and II errors and inflating effect size. Our method allowed improved estimates of protection effectiveness across scales and under different conditions and can be applied to other regions to effectively assess PA performance.

摘要

评估保护区(PA)减少森林砍伐的效果对于支持是否投资于更好地管理已保护区域或创建新保护区的决策非常有用。统计匹配通常用于评估这种效果,但保护区效果的空间自相关和区域差异经常被忽视。我们以哥伦比亚为例,采用统计匹配来考虑公园位置的混杂因素,并考虑空间自相关来确定统计显著性。我们比较了不同匹配程序的性能——在不同尺度下生成匹配对的方法——以估计 PA 减少森林砍伐的效果。匹配程序的差异影响了匹配对之间协变量的相似性(平衡)和 PA 减少森林砍伐效果的估计。独立匹配产生了最大的平衡。平均而言,独立匹配使每个区域 95%的变量达到平衡,而使用效果最差的方法时,只有 33%的变量达到平衡。最佳估计表明,哥伦比亚保护区内的平均森林砍伐量比匹配点低 40%。保护显著减少了森林砍伐,但保护区效果在不同地区有所不同。加勒比地区的保护区效果最好,而奥里诺科和太平洋地区的保护区效果最差。我们的研究结果表明,需要考虑空间自相关并为每个数据子集使用独立匹配,以推断保护在减少森林砍伐方面的效果。不考虑空间自相关会扭曲对保护效果的评估,增加 I 型和 II 型错误,并夸大效应大小。我们的方法允许在不同条件和不同尺度下改进对保护效果的估计,并可应用于其他地区,以有效地评估 PA 的表现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d592/7885028/9bc7470125cb/COBI-34-1452-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验