Suppr超能文献

暴露通知系统活动作为 SARS-CoV-2 病例预测的领先指标。

Exposure notification system activity as a leading indicator for SARS-COV-2 caseload forecasting.

机构信息

School of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA, United States of America.

University of California Los Angeles, Los Angeles, CA, United States of America.

出版信息

PLoS One. 2023 Aug 18;18(8):e0287368. doi: 10.1371/journal.pone.0287368. eCollection 2023.

Abstract

PURPOSE

Digital methods to augment traditional contact tracing approaches were developed and deployed globally during the COVID-19 pandemic. These "Exposure Notification (EN)" systems present new opportunities to support public health interventions. To date, there have been attempts to model the impact of such systems, yet no reports have explored the value of real-time system data for predictive epidemiological modeling.

METHODS

We investigated the potential to short-term forecast COVID-19 caseloads using data from California's implementation of the Google Apple Exposure Notification (GAEN) platform, branded as CA Notify. CA Notify is a digital public health intervention leveraging resident's smartphones for anonymous EN. We extended a published statistical model that uses prior case counts to investigate the possibility of predicting short-term future case counts and then added EN activity to test for improved forecast performance. Additional predictive value was assessed by comparing the pandemic forecasting models with and without EN activity to the actual reported caseloads from 1-7 days in the future.

RESULTS

Observation of time series presents noticeable evidence for temporal association of system activity and caseloads. Incorporating earlier ENs in our model improved prediction of the caseload counts. Using Bayesian inference, we found nonzero influence of EN terms with probability one. Furthermore, we found a reduction in both the mean absolute percentage error and the mean squared prediction error, the latter of at least 5% and up to 32% when using ENs over the model without.

CONCLUSIONS

This preliminary investigation suggests smartphone based ENs can significantly improve the accuracy of short-term forecasting. These predictive models can be readily deployed as local early warning systems to triage resources and interventions.

摘要

目的

在 COVID-19 大流行期间,全球开发并部署了数字方法来增强传统的接触者追踪方法。这些“暴露通知(EN)”系统为支持公共卫生干预措施提供了新的机会。迄今为止,已经有人试图对这些系统的影响进行建模,但尚无报告探讨实时系统数据对预测性流行病学建模的价值。

方法

我们研究了使用加利福尼亚州实施的 Google Apple 暴露通知(GAEN)平台(称为 CA Notify)的数据来短期预测 COVID-19 病例数的潜力。CA Notify 是一项数字公共卫生干预措施,利用居民的智能手机进行匿名 EN。我们扩展了一个已发布的统计模型,该模型使用先前的病例数来研究预测短期未来病例数的可能性,然后添加 EN 活动以测试改进的预测性能。通过将具有和不具有 EN 活动的大流行预测模型与未来 1-7 天的实际报告病例数进行比较,评估了额外的预测价值。

结果

时间序列的观察提供了系统活动和病例数之间存在时间关联的明显证据。在我们的模型中纳入更早的 EN 提高了病例数的预测。使用贝叶斯推断,我们发现 EN 项的影响不为零,概率为一。此外,我们发现使用 EN 时,平均绝对百分比误差和平均平方预测误差都有所降低,后者至少降低了 5%,最高降低了 32%,而不使用 EN 时则降低了 5%。

结论

这项初步研究表明,基于智能手机的 EN 可以显著提高短期预测的准确性。这些预测模型可以作为本地预警系统快速部署,以调配资源和干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72c2/10437830/2fcdf8a37143/pone.0287368.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验