Suppr超能文献

打开放射学中机器学习的“黑箱”:标注病例的临近程度是否可以成为一种方法?

Opening the black box of machine learning in radiology: can the proximity of annotated cases be a way?

机构信息

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Via Golgi 39, 20133, Milan, Italy.

Present Address: Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr., Stanford, CA, 94305, USA.

出版信息

Eur Radiol Exp. 2020 May 5;4(1):30. doi: 10.1186/s41747-020-00159-0.

Abstract

Machine learning (ML) and deep learning (DL) systems, currently employed in medical image analysis, are data-driven models often considered as black boxes. However, improved transparency is needed to translate automated decision-making to clinical practice. To this aim, we propose a strategy to open the black box by presenting to the radiologist the annotated cases (ACs) proximal to the current case (CC), making decision rationale and uncertainty more explicit. The ACs, used for training, validation, and testing in supervised methods and for validation and testing in the unsupervised ones, could be provided as support of the ML/DL tool. If the CC is localised in a classification space and proximal ACs are selected by proper metrics, the latter ones could be shown in their original form of images, enriched with annotation to radiologists, thus allowing immediate interpretation of the CC classification. Moreover, the density of ACs in the CC neighbourhood, their image saliency maps, classification confidence, demographics, and clinical information would be available to radiologists. Thus, encrypted information could be transmitted to radiologists, who will know model output (what) and salient image regions (where) enriched by ACs, providing classification rationale (why). Summarising, if a classifier is data-driven, let us make its interpretation data-driven too.

摘要

机器学习 (ML) 和深度学习 (DL) 系统目前应用于医学图像分析,它们是基于数据的模型,通常被认为是黑盒。然而,为了将自动化决策转化为临床实践,需要提高透明度。为此,我们提出了一种通过向放射科医生展示与当前病例 (CC) 接近的注释病例 (AC) 的策略,使决策依据和不确定性更加明确,从而打开黑盒。AC 可用于监督方法中的训练、验证和测试,以及无监督方法中的验证和测试,并可作为 ML/DL 工具的支持。如果 CC 位于分类空间中,并且通过适当的指标选择了近端 AC,则可以以图像的原始形式显示后者,并添加注释,以便放射科医生立即解释 CC 的分类。此外,AC 在 CC 附近的密度、图像显著图、分类置信度、人口统计学和临床信息将提供给放射科医生。因此,可以将加密信息传输给放射科医生,他们将知道模型输出 (what) 和通过 AC 丰富的显著图像区域 (where),提供分类依据 (why)。总之,如果分类器是基于数据的,让我们也使其解释基于数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ddc/7200961/51a0333819c9/41747_2020_159_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验