Suppr超能文献

压缩荧光显微镜用于生物和高光谱成像。

Compressive fluorescence microscopy for biological and hyperspectral imaging.

机构信息

Université Bordeaux 2, Interdisciplinary Institute for Neuroscience, Unité Mixte de Recherche 5297, F-33000 Bordeaux, France.

出版信息

Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):E1679-87. doi: 10.1073/pnas.1119511109. Epub 2012 Jun 11.

Abstract

The mathematical theory of compressed sensing (CS) asserts that one can acquire signals from measurements whose rate is much lower than the total bandwidth. Whereas the CS theory is now well developed, challenges concerning hardware implementations of CS-based acquisition devices--especially in optics--have only started being addressed. This paper presents an implementation of compressive sensing in fluorescence microscopy and its applications to biomedical imaging. Our CS microscope combines a dynamic structured wide-field illumination and a fast and sensitive single-point fluorescence detection to enable reconstructions of images of fluorescent beads, cells, and tissues with undersampling ratios (between the number of pixels and number of measurements) up to 32. We further demonstrate a hyperspectral mode and record images with 128 spectral channels and undersampling ratios up to 64, illustrating the potential benefits of CS acquisition for higher-dimensional signals, which typically exhibits extreme redundancy. Altogether, our results emphasize the interest of CS schemes for acquisition at a significantly reduced rate and point to some remaining challenges for CS fluorescence microscopy.

摘要

压缩感知(CS)的数学理论断言,人们可以从速率远低于总带宽的测量中获取信号。虽然 CS 理论现在已经很成熟,但基于 CS 的采集设备的硬件实现所面临的挑战——特别是在光学领域——才刚刚开始得到解决。本文介绍了在荧光显微镜中实现压缩感知及其在生物医学成像中的应用。我们的 CS 显微镜结合了动态结构的宽场照明和快速灵敏的单点荧光检测,能够对荧光珠、细胞和组织的图像进行重建,欠采样比(像素数与测量数之比)高达 32。我们进一步展示了一种高光谱模式,并以高达 64 的欠采样比记录了 128 个光谱通道的图像,说明了 CS 采集对于具有极高冗余度的高维信号的潜在优势。总的来说,我们的结果强调了 CS 方案以显著降低的速率进行采集的意义,并指出了 CS 荧光显微镜仍然存在的一些挑战。

相似文献

1
Compressive fluorescence microscopy for biological and hyperspectral imaging.压缩荧光显微镜用于生物和高光谱成像。
Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):E1679-87. doi: 10.1073/pnas.1119511109. Epub 2012 Jun 11.
2
Compressive hyperspectral microscopy for cancer detection.压缩高光谱显微镜用于癌症检测。
J Biomed Opt. 2023 Sep;28(9):096502. doi: 10.1117/1.JBO.28.9.096502. Epub 2023 Sep 9.
7
Single pixel hyperspectral bioluminescence tomography based on compressive sensing.基于压缩感知的单像素高光谱生物发光断层扫描
Biomed Opt Express. 2019 Oct 7;10(11):5549-5564. doi: 10.1364/BOE.10.005549. eCollection 2019 Nov 1.
9
Hyperspectral confocal microscope.高光谱共聚焦显微镜。
Appl Opt. 2006 Aug 20;45(24):6283-91. doi: 10.1364/ao.45.006283.

引用本文的文献

2
Optogenetic Brain-Computer Interfaces.光遗传学脑机接口
Bioengineering (Basel). 2024 Aug 12;11(8):821. doi: 10.3390/bioengineering11080821.

本文引用的文献

6
Compressive holography.压缩全息术
Opt Express. 2009 Jul 20;17(15):13040-9. doi: 10.1364/oe.17.013040.
8
Multilayer three-dimensional super resolution imaging of thick biological samples.厚生物样本的多层三维超分辨率成像
Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20221-6. doi: 10.1073/pnas.0810636105. Epub 2008 Dec 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验