Suppr超能文献

用于稳健图形建模的分层归一化完全随机测度

Hierarchical Normalized Completely Random Measures for Robust Graphical Modeling.

作者信息

Cremaschi Andrea, Argiento Raffaele, Shoemaker Katherine, Peterson Christine, Vannucci Marina

机构信息

Department of Cancer Immunology, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway.

Oslo Centre for Biostatistics and Epidemiology (OCBE), University of Oslo, Oslo, Norway.

出版信息

Bayesian Anal. 2019 Dec;14(4):1271-1301. doi: 10.1214/19-ba1153. Epub 2019 Mar 28.

Abstract

Gaussian graphical models are useful tools for exploring network structures in multivariate normal data. In this paper we are interested in situations where data show departures from Gaussianity, therefore requiring alternative modeling distributions. The multivariate -distribution, obtained by dividing each component of the data vector by a gamma random variable, is a straightforward generalization to accommodate deviations from normality such as heavy tails. Since different groups of variables may be contaminated to a different extent, Finegold and Drton (2014) introduced the Dirichlet -distribution, where the divisors are clustered using a Dirichlet process. In this work, we consider a more general class of nonparametric distributions as the prior on the divisor terms, namely the class of normalized completely random measures (NormCRMs). To improve the effectiveness of the clustering, we propose modeling the dependence among the divisors through a nonparametric hierarchical structure, which allows for the sharing of parameters across the samples in the data set. This desirable feature enables us to cluster together different components of multivariate data in a parsimonious way. We demonstrate through simulations that this approach provides accurate graphical model inference, and apply it to a case study examining the dependence structure in radiomics data derived from The Cancer Imaging Atlas.

摘要

高斯图形模型是探索多元正态数据网络结构的有用工具。在本文中,我们关注数据偏离高斯性的情况,因此需要替代的建模分布。通过将数据向量的每个分量除以一个伽马随机变量得到的多元分布,是一种直接的推广,以适应偏离正态性的情况,如重尾。由于不同组的变量可能受到不同程度的污染,Finegold和Drton(2014)引入了狄利克雷分布,其中除数使用狄利克雷过程进行聚类。在这项工作中,我们考虑一类更一般的非参数分布作为除数项的先验,即归一化完全随机测度(NormCRMs)类。为了提高聚类的有效性,我们建议通过非参数层次结构对除数之间的依赖性进行建模,这允许在数据集中的样本之间共享参数。这个理想的特性使我们能够以简洁的方式将多元数据的不同分量聚类在一起。我们通过模拟证明了这种方法提供了准确的图形模型推断,并将其应用于一个案例研究,该研究考察了来自癌症成像图谱的放射组学数据中的依赖性结构。

相似文献

3
Latent Nested Nonparametric Priors (with Discussion).潜在嵌套非参数先验(附讨论)
Bayesian Anal. 2019 Dec;14(4):1303-1356. doi: 10.1214/19-BA1169. Epub 2019 Jun 27.
6
Bayesian nonparametric hierarchical modeling.贝叶斯非参数分层建模
Biom J. 2009 Apr;51(2):273-84. doi: 10.1002/bimj.200800183.
9
Bayesian Inference of Multiple Gaussian Graphical Models.多个高斯图形模型的贝叶斯推断
J Am Stat Assoc. 2015 Mar 1;110(509):159-174. doi: 10.1080/01621459.2014.896806.

引用本文的文献

1
Covariate-Assisted Bayesian Graph Learning for Heterogeneous Data.用于异构数据的协变量辅助贝叶斯图学习
J Am Stat Assoc. 2024;119(547):1985-1999. doi: 10.1080/01621459.2023.2233744. Epub 2023 Sep 6.
3
Bayesian graphical models for modern biological applications.适用于现代生物学应用的贝叶斯图形模型。
Stat Methods Appt. 2022;31(2):197-225. doi: 10.1007/s10260-021-00572-8. Epub 2021 May 27.

本文引用的文献

3
Sparse graphs using exchangeable random measures.使用可交换随机测度的稀疏图。
J R Stat Soc Series B Stat Methodol. 2017 Nov;79(5):1295-1366. doi: 10.1111/rssb.12233. Epub 2017 Sep 23.
8
Radiomics: Images Are More than Pictures, They Are Data.放射组学:图像不止是图片,它们是数据。
Radiology. 2016 Feb;278(2):563-77. doi: 10.1148/radiol.2015151169. Epub 2015 Nov 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验