Suppr超能文献

关于人工智能在 2019 冠状病毒病患者肺部医学成像中的应用的综述。

A review on the use of artificial intelligence for medical imaging of the lungs of patients with coronavirus disease 2019.

机构信息

Department of Innovative Biomedical Visualization, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan.

Department of Radiology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan.

出版信息

Diagn Interv Radiol. 2020 Sep;26(5):443-448. doi: 10.5152/dir.2019.20294.

Abstract

The results of research on the use of artificial intelligence (AI) for medical imaging of the lungs of patients with coronavirus disease 2019 (COVID-19) has been published in various forms. In this study, we reviewed the AI for diagnostic imaging of COVID-19 pneumonia. PubMed, arXiv, medRxiv, and Google scholar were used to search for AI studies. There were 15 studies of COVID-19 that used AI for medical imaging. Of these, 11 studies used AI for computed tomography (CT) and 4 used AI for chest radiography. Eight studies presented independent test data, 5 used disclosed data, and 4 disclosed the AI source codes. The number of datasets ranged from 106 to 5941, with sensitivities ranging from 0.67-1.00 and specificities ranging from 0.81-1.00 for prediction of COVID-19 pneumonia. Four studies with independent test datasets showed a breakdown of the data ratio and reported prediction of COVID-19 pneumonia with sensitivity, specificity, and area under the curve (AUC). These 4 studies showed very high sensitivity, specificity, and AUC, in the range of 0.9-0.98, 0.91-0.96, and 0.96-0.99, respectively.

摘要

已发表各种形式的关于使用人工智能(AI)对 2019 冠状病毒病(COVID-19)患者肺部进行医学成像的研究结果。在这项研究中,我们回顾了用于 COVID-19 肺炎诊断成像的 AI。使用 PubMed、arXiv、medRxiv 和 Google Scholar 搜索 AI 研究。有 15 项关于 COVID-19 的 AI 医学成像研究。其中,11 项研究使用 AI 进行计算机断层扫描(CT),4 项研究使用 AI 进行胸部 X 线摄影。有 8 项研究提供了独立的测试数据,5 项研究使用了公开的数据,4 项研究公开了 AI 源代码。数据集的数量从 106 到 5941 不等,用于预测 COVID-19 肺炎的灵敏度范围为 0.67-1.00,特异性范围为 0.81-1.00。有 4 项具有独立测试数据集的研究对数据比例进行了细分,并报告了 COVID-19 肺炎的预测结果,包括灵敏度、特异性和曲线下面积(AUC)。这 4 项研究的灵敏度、特异性和 AUC 分别在 0.9-0.98、0.91-0.96 和 0.96-0.99 的范围内非常高。

相似文献

9
Thoracic imaging tests for the diagnosis of COVID-19.用于诊断新型冠状病毒肺炎的胸部影像学检查
Cochrane Database Syst Rev. 2020 Sep 30;9:CD013639. doi: 10.1002/14651858.CD013639.pub2.
10
Any unique image biomarkers associated with COVID-19?与 COVID-19 相关的独特影像生物标志物有哪些?
Eur Radiol. 2020 Nov;30(11):6221-6227. doi: 10.1007/s00330-020-06956-w. Epub 2020 Jul 20.

引用本文的文献

10
A comprehensive review on efficient approaches for combating coronaviruses.关于对抗冠状病毒的有效方法的综合综述。
Biomed Pharmacother. 2021 Dec;144:112353. doi: 10.1016/j.biopha.2021.112353. Epub 2021 Oct 22.

本文引用的文献

3
Deep Learning Enables Accurate Diagnosis of Novel Coronavirus (COVID-19) With CT Images.深度学习利用 CT 图像准确诊断新型冠状病毒(COVID-19)。
IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2775-2780. doi: 10.1109/TCBB.2021.3065361. Epub 2021 Dec 8.
8
A Deep Learning System to Screen Novel Coronavirus Disease 2019 Pneumonia.一种用于筛查2019冠状病毒病肺炎的深度学习系统。
Engineering (Beijing). 2020 Oct;6(10):1122-1129. doi: 10.1016/j.eng.2020.04.010. Epub 2020 Jun 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验