Department of Innovative Biomedical Visualization, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan.
Department of Radiology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan.
Diagn Interv Radiol. 2020 Sep;26(5):443-448. doi: 10.5152/dir.2019.20294.
The results of research on the use of artificial intelligence (AI) for medical imaging of the lungs of patients with coronavirus disease 2019 (COVID-19) has been published in various forms. In this study, we reviewed the AI for diagnostic imaging of COVID-19 pneumonia. PubMed, arXiv, medRxiv, and Google scholar were used to search for AI studies. There were 15 studies of COVID-19 that used AI for medical imaging. Of these, 11 studies used AI for computed tomography (CT) and 4 used AI for chest radiography. Eight studies presented independent test data, 5 used disclosed data, and 4 disclosed the AI source codes. The number of datasets ranged from 106 to 5941, with sensitivities ranging from 0.67-1.00 and specificities ranging from 0.81-1.00 for prediction of COVID-19 pneumonia. Four studies with independent test datasets showed a breakdown of the data ratio and reported prediction of COVID-19 pneumonia with sensitivity, specificity, and area under the curve (AUC). These 4 studies showed very high sensitivity, specificity, and AUC, in the range of 0.9-0.98, 0.91-0.96, and 0.96-0.99, respectively.
已发表各种形式的关于使用人工智能(AI)对 2019 冠状病毒病(COVID-19)患者肺部进行医学成像的研究结果。在这项研究中,我们回顾了用于 COVID-19 肺炎诊断成像的 AI。使用 PubMed、arXiv、medRxiv 和 Google Scholar 搜索 AI 研究。有 15 项关于 COVID-19 的 AI 医学成像研究。其中,11 项研究使用 AI 进行计算机断层扫描(CT),4 项研究使用 AI 进行胸部 X 线摄影。有 8 项研究提供了独立的测试数据,5 项研究使用了公开的数据,4 项研究公开了 AI 源代码。数据集的数量从 106 到 5941 不等,用于预测 COVID-19 肺炎的灵敏度范围为 0.67-1.00,特异性范围为 0.81-1.00。有 4 项具有独立测试数据集的研究对数据比例进行了细分,并报告了 COVID-19 肺炎的预测结果,包括灵敏度、特异性和曲线下面积(AUC)。这 4 项研究的灵敏度、特异性和 AUC 分别在 0.9-0.98、0.91-0.96 和 0.96-0.99 的范围内非常高。