Suppr超能文献

超越平均场理论:神经网络的统计场理论。

Beyond mean field theory: statistical field theory for neural networks.

作者信息

Buice Michael A, Chow Carson C

机构信息

Center for Learning and Memory, University of Texas at Austin, Austin, TX, USA.

Laboratory of Biological Modeling, NIDDK, NIH, Bethesda, MD, USA.

出版信息

J Stat Mech. 2013 Mar;2013:P03003. doi: 10.1088/1742-5468/2013/03/P03003.

Abstract

Mean field theories have been a stalwart for studying the dynamics of networks of coupled neurons. They are convenient because they are relatively simple and possible to analyze. However, classical mean field theory neglects the effects of fluctuations and correlations due to single neuron effects. Here, we consider various possible approaches for going beyond mean field theory and incorporating correlation effects. Statistical field theory methods, in particular the Doi-Peliti-Janssen formalism, are particularly useful in this regard.

摘要

平均场理论一直是研究耦合神经元网络动力学的中流砥柱。它们很方便,因为相对简单且易于分析。然而,经典平均场理论忽略了单个神经元效应所导致的涨落和关联效应。在此,我们考虑超越平均场理论并纳入关联效应的各种可能方法。统计场论方法,特别是多伊 - 佩利蒂 - 扬森形式体系,在这方面特别有用。

相似文献

1
Beyond mean field theory: statistical field theory for neural networks.
J Stat Mech. 2013 Mar;2013:P03003. doi: 10.1088/1742-5468/2013/03/P03003.
2
Particle entity in the Doi-Peliti and response field formalisms.
J Phys A Math Theor. 2023 Apr 28;56(17):175002. doi: 10.1088/1751-8121/acc498. Epub 2023 Apr 11.
3
Finite-size effects for spiking neural networks with spatially dependent coupling.
Phys Rev E. 2018 Dec;98(6). doi: 10.1103/physreve.98.062414. Epub 2018 Dec 27.
4
Field theories and exact stochastic equations for interacting particle systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 1):030101. doi: 10.1103/PhysRevE.74.030101. Epub 2006 Sep 1.
5
Mathematical studies of the dynamics of finite-size binary neural networks: A review of recent progress.
Math Biosci Eng. 2019 Sep 4;16(6):8025-8059. doi: 10.3934/mbe.2019404.
7
Dynamic finite size effects in spiking neural networks.
PLoS Comput Biol. 2013;9(1):e1002872. doi: 10.1371/journal.pcbi.1002872. Epub 2013 Jan 24.
8
Finite-size and correlation-induced effects in mean-field dynamics.
J Comput Neurosci. 2011 Nov;31(3):453-84. doi: 10.1007/s10827-011-0320-5. Epub 2011 Mar 8.
9
Firing rate distributions in plastic networks of spiking neurons.
Netw Neurosci. 2025 Mar 20;9(1):447-474. doi: 10.1162/netn_a_00442. eCollection 2025.
10
A stochastic-field description of finite-size spiking neural networks.
PLoS Comput Biol. 2017 Aug 7;13(8):e1005691. doi: 10.1371/journal.pcbi.1005691. eCollection 2017 Aug.

引用本文的文献

1
Lattice physics approaches for neural networks.
iScience. 2024 Nov 15;27(12):111390. doi: 10.1016/j.isci.2024.111390. eCollection 2024 Dec 20.
3
Neural Activity in Quarks Language: Lattice Field Theory for a Network of Real Neurons.
Entropy (Basel). 2024 Jun 6;26(6):495. doi: 10.3390/e26060495.
6
NNMT: Mean-Field Based Analysis Tools for Neuronal Network Models.
Front Neuroinform. 2022 May 27;16:835657. doi: 10.3389/fninf.2022.835657. eCollection 2022.
7
The Mean Field Approach for Populations of Spiking Neurons.
Adv Exp Med Biol. 2022;1359:125-157. doi: 10.1007/978-3-030-89439-9_6.
8
Model Reduction Captures Stochastic Gamma Oscillations on Low-Dimensional Manifolds.
Front Comput Neurosci. 2021 Aug 17;15:678688. doi: 10.3389/fncom.2021.678688. eCollection 2021.
9
Brain Connectivity Studies on Structure-Function Relationships: A Short Survey with an Emphasis on Machine Learning.
Comput Intell Neurosci. 2021 May 27;2021:5573740. doi: 10.1155/2021/5573740. eCollection 2021.
10
Thermodynamic Formalism in Neuronal Dynamics and Spike Train Statistics.
Entropy (Basel). 2020 Nov 23;22(11):1330. doi: 10.3390/e22111330.

本文引用的文献

2
Effective stochastic behavior in dynamical systems with incomplete information.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Nov;84(5 Pt 1):051120. doi: 10.1103/PhysRevE.84.051120. Epub 2011 Nov 17.
3
Are different rhythms good for different functions?
Front Hum Neurosci. 2010 Nov 2;4:187. doi: 10.3389/fnhum.2010.00187. eCollection 2010.
4
Systematic fluctuation expansion for neural network activity equations.
Neural Comput. 2010 Feb;22(2):377-426. doi: 10.1162/neco.2009.02-09-960.
5
Statistical mechanics of the neocortex.
Prog Biophys Mol Biol. 2009 Feb-Apr;99(2-3):53-86. doi: 10.1016/j.pbiomolbio.2009.07.003. Epub 2009 Aug 18.
6
A constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs.
Front Comput Neurosci. 2009 Feb 18;3:1. doi: 10.3389/neuro.10.001.2009. eCollection 2009.
7
A master equation formalism for macroscopic modeling of asynchronous irregular activity states.
Neural Comput. 2009 Jan;21(1):46-100. doi: 10.1162/neco.2009.02-08-710.
8
Stochastic dynamics of a finite-size spiking neural network.
Neural Comput. 2007 Dec;19(12):3262-92. doi: 10.1162/neco.2007.19.12.3262.
9
Correlations, fluctuations, and stability of a finite-size network of coupled oscillators.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Sep;76(3 Pt 1):031118. doi: 10.1103/PhysRevE.76.031118. Epub 2007 Sep 13.
10
Field-theoretic approach to fluctuation effects in neural networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 May;75(5 Pt 1):051919. doi: 10.1103/PhysRevE.75.051919. Epub 2007 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验