Suppr超能文献

金属有机骨架中封装的醇脱氢酶的催化活性、稳定性和负载趋势。

Catalytic Activity, Stability, and Loading Trends of Alcohol Dehydrogenase Enzyme Encapsulated in a Metal-Organic Framework.

机构信息

Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas 72701, United States.

Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States.

出版信息

ACS Appl Mater Interfaces. 2020 Jun 10;12(23):26084-26094. doi: 10.1021/acsami.0c06964. Epub 2020 Jun 1.

Abstract

Recently, it has been shown that enzyme encapsulation inside metal-organic frameworks (MOFs) can increase enzyme activity and serve as protection from adverse environmental conditions. Little is understood about how the enzymes move into and are held inside the MOFs although it is believed that intermolecular forces between the MOF and the enzyme cause it to be held in place. If this process can be better understood, it can have dramatic implications on the cost-effectiveness and implementation of enzyme-MOF complexes. This is of specific importance in the medical sector for protein therapy and the industrial sector where enzyme use is expected to increase. Herein, we synthesized alcohol dehydrogenase (ADH) and PCN-333 to study encapsulation, stability, and enzyme activity to expand the knowledge of our field and offer a potential improvement to a synthetic route for biofuel synthesis. From this, we found a correlation between the concentration of a buffer and the loading of an enzyme, with surprising loading trends. We conclude that the buffer solution decreases interactions between the enzyme and MOF, supporting conventional theory and allowing it to penetrate deeper into the structure causing higher enzyme loading while allowing for excellent stability over time at various pH values and temperatures and after multiple reactions. We also observe new trends such as a rebounding effect in loading and "out-of-bounds" reactions.

摘要

最近,已经证明将酶封装在金属有机框架(MOFs)内可以提高酶的活性,并起到保护作用,使其免受不利环境条件的影响。尽管人们认为 MOF 和酶之间的分子间力会导致其固定在适当位置,但对于酶如何进入并保持在 MOFs 内,人们知之甚少。如果这一过程能够得到更好的理解,将对酶-MOF 复合物的成本效益和实施产生重大影响。这在医疗领域的蛋白质治疗和工业领域中尤为重要,预计酶的使用将会增加。在此,我们合成了醇脱氢酶(ADH)和 PCN-333 来研究封装、稳定性和酶活性,以扩展我们领域的知识,并为生物燃料合成的合成路线提供潜在的改进。由此,我们发现缓冲液浓度与酶负载之间存在相关性,存在令人惊讶的负载趋势。我们得出的结论是,缓冲溶液降低了酶与 MOF 之间的相互作用,支持了传统理论,使它能够更深入地渗透到结构中,从而导致更高的酶负载,同时在各种 pH 值和温度下以及经过多次反应后具有出色的稳定性。我们还观察到了新的趋势,例如负载的反弹效应和“超出范围”的反应。

相似文献

1
Catalytic Activity, Stability, and Loading Trends of Alcohol Dehydrogenase Enzyme Encapsulated in a Metal-Organic Framework.
ACS Appl Mater Interfaces. 2020 Jun 10;12(23):26084-26094. doi: 10.1021/acsami.0c06964. Epub 2020 Jun 1.
2
Metal-Organic Frameworks: A New Platform for Enzyme Immobilization.
Chembiochem. 2020 Sep 14;21(18):2585-2590. doi: 10.1002/cbic.202000095. Epub 2020 May 19.
3
Rapid mechanochemical encapsulation of biocatalysts into robust metal-organic frameworks.
Nat Commun. 2019 Nov 1;10(1):5002. doi: 10.1038/s41467-019-12966-0.
4
Enzyme Immobilization on Graphite Oxide (GO) Surface via One-Pot Synthesis of GO/Metal-Organic Framework Composites for Large-Substrate Biocatalysis.
ACS Appl Mater Interfaces. 2020 May 20;12(20):23119-23126. doi: 10.1021/acsami.0c04101. Epub 2020 May 7.
5
Enzyme Immobilization on Metal-Organic Framework (MOF): Effects on Thermostability and Function.
Protein Pept Lett. 2019;26(9):636-647. doi: 10.2174/0929866526666190430120046.
6
Magnetic-metal organic framework (magnetic-MOF): A novel platform for enzyme immobilization and nanozyme applications.
Int J Biol Macromol. 2018 Dec;120(Pt B):2293-2302. doi: 10.1016/j.ijbiomac.2018.08.126. Epub 2018 Aug 30.
7
Metal-Organic Framework Derived Nanozymes in Biomedicine.
Acc Chem Res. 2020 Jul 21;53(7):1389-1400. doi: 10.1021/acs.accounts.0c00268. Epub 2020 Jun 29.
8
Enzyme Encapsulation in Mesoporous Metal-Organic Frameworks for Selective Biodegradation of Harmful Dye Molecules.
Angew Chem Int Ed Engl. 2018 Dec 3;57(49):16141-16146. doi: 10.1002/anie.201811327. Epub 2018 Nov 8.
9
Environmentally Friendly Enzyme Immobilization on MOF Materials.
Methods Mol Biol. 2020;2100:271-296. doi: 10.1007/978-1-0716-0215-7_18.
10
[Advances in enzyme immobilization based on hierarchical porous metal-organic frameworks].
Sheng Wu Gong Cheng Xue Bao. 2023 Mar 25;39(3):930-941. doi: 10.13345/j.cjb.220623.

引用本文的文献

1
Exploring the effects of excipients on complex coacervation.
J Colloid Interface Sci. 2025 Oct;695:137808. doi: 10.1016/j.jcis.2025.137808. Epub 2025 May 5.
2
Recyclable Enzymatic Hydrolysis with Metal-Organic Framework Stabilized Humicola insolens Cutinase (HiC) for Potential PET Upcycling.
Chem Bio Eng. 2024 Aug 30;1(9):798-804. doi: 10.1021/cbe.4c00101. eCollection 2024 Oct 24.
3
Closing the Loop in the Carbon Cycle: Enzymatic Reactions Housed in Metal-Organic Frameworks for CO Conversion to Methanol.
Appl Biochem Biotechnol. 2025 Mar;197(3):1345-1392. doi: 10.1007/s12010-024-05111-1. Epub 2024 Nov 26.
4
Hen egg white lysozyme encapsulated in ZIF-8 for performing promiscuous enzymatic Mannich reaction.
iScience. 2023 Sep 1;26(10):107807. doi: 10.1016/j.isci.2023.107807. eCollection 2023 Oct 20.
5
Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis.
Chem Rev. 2023 May 10;123(9):5347-5420. doi: 10.1021/acs.chemrev.2c00879. Epub 2023 Apr 12.
6
Enzyme Immobilization on Metal Organic Frameworks: the Effect of Buffer on the Stability of the Support.
Langmuir. 2022 Nov 8;38(44):13382-13391. doi: 10.1021/acs.langmuir.2c01630. Epub 2022 Oct 26.
7
Synthesis and Biomedical Applications of Highly Porous Metal-Organic Frameworks.
Molecules. 2022 Oct 5;27(19):6585. doi: 10.3390/molecules27196585.
8
Role of Molecular Modification and Protein Folding in the Nucleation and Growth of Protein-Metal-Organic Frameworks.
Chem Mater. 2022 Sep 27;34(18):8336-8344. doi: 10.1021/acs.chemmater.2c01903. Epub 2022 Sep 15.
10
Insights into the Interaction between Immobilized Biocatalysts and Metal-Organic Frameworks: A Case Study of PCN-333.
JACS Au. 2021 Nov 15;1(12):2172-2181. doi: 10.1021/jacsau.1c00226. eCollection 2021 Dec 27.

本文引用的文献

1
Improving MOF stability: approaches and applications.
Chem Sci. 2019 Oct 2;10(44):10209-10230. doi: 10.1039/c9sc03916c. eCollection 2019 Nov 28.
3
Protein-Structure-Directed Metal-Organic Zeolite-like Networks as Biomacromolecule Carriers.
Angew Chem Int Ed Engl. 2020 Apr 6;59(15):6263-6267. doi: 10.1002/anie.202000299. Epub 2020 Mar 2.
4
Integration of Enzymes and Photosensitizers in a Hierarchical Mesoporous Metal-Organic Framework for Light-Driven CO Reduction.
J Am Chem Soc. 2020 Jan 29;142(4):1768-1773. doi: 10.1021/jacs.9b12828. Epub 2020 Jan 17.
5
Packaging and delivering enzymes by amorphous metal-organic frameworks.
Nat Commun. 2019 Nov 14;10(1):5165. doi: 10.1038/s41467-019-13153-x.
6
Metal-Organic Frameworks for Food Safety.
Chem Rev. 2019 Sep 25;119(18):10638-10690. doi: 10.1021/acs.chemrev.9b00257. Epub 2019 Jul 30.
7
MOF × Biopolymer: Collaborative Combination of Metal-Organic Framework and Biopolymer for Advanced Anticancer Therapy.
ACS Appl Mater Interfaces. 2019 Aug 7;11(31):27512-27520. doi: 10.1021/acsami.9b05736. Epub 2019 Jul 25.
8
Enhanced Stability and Controlled Delivery of MOF-Encapsulated Vaccines and Their Immunogenic Response In Vivo.
ACS Appl Mater Interfaces. 2019 Mar 13;11(10):9740-9746. doi: 10.1021/acsami.8b20504. Epub 2019 Mar 1.
9
DNA-Functionalized Metal-Organic Framework Nanoparticles for Intracellular Delivery of Proteins.
J Am Chem Soc. 2019 Feb 13;141(6):2215-2219. doi: 10.1021/jacs.8b12705. Epub 2019 Feb 4.
10
How Do Enzymes Orient When Trapped on Metal-Organic Framework (MOF) Surfaces?
J Am Chem Soc. 2018 Nov 28;140(47):16032-16036. doi: 10.1021/jacs.8b09257. Epub 2018 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验