Nguyen Tran N H, Nolan James K, Cheng Xi, Park Hyunsu, Wang Yi, Lam Stephanie, Lee Hyungwoo, Kim Sang Joon, Shi Riyi, Chubykin Alexander A, Lee Hyowon
Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Device, Purdue University, West Lafayette, IN, USA.
Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.
J Electroanal Chem (Lausanne). 2020 Jun 1;866. doi: 10.1016/j.jelechem.2020.114136. Epub 2020 Apr 17.
As one of the most abundant neurotransmitters in the brain and the spinal cord, glutamate plays many important roles in the nervous system. Precise information about the level of glutamate in the extracellular space of living brain tissue may provide new insights on fundamental understanding of the role of glutamate in neurological disorders as well as neurophysiological phenomena. Electrochemical sensor has emerged as a promising solution that can satisfy the requirement for highly reliable and continuous monitoring method with good spatiotemporal resolution for characterization of extracellular glutamate concentration. Recently, we published a method to create a simple printable glutamate biosensor using platinum nanoparticles. In this work, we introduce an even simpler and lower cost conductive polymer composite using commercially available activated carbon with platinum microparticles to easily fabricate highly sensitive glutamate biosensor using direct ink writing method. The fabricated biosensors are functionality superior than previously reported with the sensitivity of 5.73 ± 0.078 nA μM mm, detection limit of 0.03 μM, response time less than or equal to 1 s, and a linear range from 1 μM up to 925 μM. In this study, we utilize astrocyte cell culture to demonstrate our biosensor's ability to monitor glutamate uptake process. We also demonstrate direct measurement of glutamate release from optogenetic stimulation in mouse primary visual cortex (V1) brain slices.
作为大脑和脊髓中含量最为丰富的神经递质之一,谷氨酸在神经系统中发挥着许多重要作用。有关活脑组织细胞外空间中谷氨酸水平的精确信息,可能会为深入理解谷氨酸在神经疾病以及神经生理现象中的作用提供新的见解。电化学传感器已成为一种很有前景的解决方案,它能够满足对高度可靠且连续的监测方法的要求,这种方法具有良好的时空分辨率,可用于表征细胞外谷氨酸浓度。最近,我们发表了一种使用铂纳米颗粒制造简单可打印谷氨酸生物传感器的方法。在这项工作中,我们介绍了一种更简单且成本更低的导电聚合物复合材料,它使用市售的活性炭和铂微粒,通过直接墨水书写法轻松制造出高灵敏度的谷氨酸生物传感器。所制造的生物传感器功能优于先前报道的产品,灵敏度为5.73±0.078 nA μM⁻¹ mm⁻¹,检测限为0.03 μM,响应时间小于或等于1秒,线性范围为1 μM至925 μM。在本研究中,我们利用星形胶质细胞培养来证明我们的生物传感器监测谷氨酸摄取过程的能力。我们还展示了在小鼠初级视觉皮层(V1)脑片中通过光遗传学刺激直接测量谷氨酸释放的情况。