Coelho Simao, Baek Jongho, Graus Matthew S, Halstead James M, Nicovich Philip R, Feher Kristen, Gandhi Hetvi, Gooding J Justin, Gaus Katharina
EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, New South Wales, Australia.
Allen Institute for Brain Science, Seattle, WA, USA.
Sci Adv. 2020 Apr 17;6(16):eaay8271. doi: 10.1126/sciadv.aay8271. eCollection 2020 Apr.
Single-molecule localization microscopy (SMLM) has the potential to quantify the diversity in spatial arrangements of molecules in intact cells. However, this requires that the single-molecule emitters are localized with ultrahigh precision irrespective of the sample format and the length of the data acquisition. We advance SMLM to enable direct distance measurements between molecules in intact cells on the scale between 1 and 20 nm. Our actively stabilized microscope combines three-dimensional real-time drift corrections and achieves a stabilization of <1 nm and localization precision of ~1 nm. To demonstrate the biological applicability of the new microscope, we show a 4- to 7-nm difference in spatial separations between signaling T cell receptors and phosphatases (CD45) in active and resting T cells. In summary, by overcoming the major bottlenecks in SMLM imaging, it is possible to generate molecular images with nanometer accuracy and conduct distance measurements on the biological relevant length scales.
单分子定位显微镜(SMLM)有潜力量化完整细胞中分子空间排列的多样性。然而,这要求无论样品形式和数据采集时长如何,单分子发射体都能以超高精度进行定位。我们改进了SMLM,以实现对完整细胞中分子间1至20纳米尺度的直接距离测量。我们的主动稳定显微镜结合了三维实时漂移校正,实现了小于1纳米的稳定性和约1纳米的定位精度。为证明新显微镜的生物学适用性,我们展示了活化和静息T细胞中信号转导T细胞受体与磷酸酶(CD45)之间空间间距存在4至7纳米的差异。总之,通过克服SMLM成像中的主要瓶颈,可以生成具有纳米精度的分子图像,并在生物学相关长度尺度上进行距离测量。