Suppr超能文献

利用机器学习和颈动脉/股动脉成像框架在类风湿关节炎患者中进行心血管疾病检测。

Cardiovascular disease detection using machine learning and carotid/femoral arterial imaging frameworks in rheumatoid arthritis patients.

机构信息

Rheumatology Unit, National Kapodistrian University of Athens, Athens, Greece.

Research Intern, AtheroPoint™, Roseville, CA, USA.

出版信息

Rheumatol Int. 2022 Feb;42(2):215-239. doi: 10.1007/s00296-021-05062-4. Epub 2022 Jan 11.

Abstract

The study proposes a novel machine learning (ML) paradigm for cardiovascular disease (CVD) detection in individuals at medium to high cardiovascular risk using data from a Greek cohort of 542 individuals with rheumatoid arthritis, or diabetes mellitus, and/or arterial hypertension, using conventional or office-based, laboratory-based blood biomarkers and carotid/femoral ultrasound image-based phenotypes. Two kinds of data (CVD risk factors and presence of CVD-defined as stroke, or myocardial infarction, or coronary artery syndrome, or peripheral artery disease, or coronary heart disease) as ground truth, were collected at two-time points: (i) at visit 1 and (ii) at visit 2 after 3 years. The CVD risk factors were divided into three clusters (conventional or office-based, laboratory-based blood biomarkers, carotid ultrasound image-based phenotypes) to study their effect on the ML classifiers. Three kinds of ML classifiers (Random Forest, Support Vector Machine, and Linear Discriminant Analysis) were applied in a two-fold cross-validation framework using the data augmented by synthetic minority over-sampling technique (SMOTE) strategy. The performance of the ML classifiers was recorded. In this cohort with overall 46 CVD risk factors (covariates) implemented in an online cardiovascular framework, that requires calculation time less than 1 s per patient, a mean accuracy and area-under-the-curve (AUC) of 98.40% and 0.98 (p < 0.0001) for CVD presence detection at visit 1, and 98.39% and 0.98 (p < 0.0001) at visit 2, respectively. The performance of the cardiovascular framework was significantly better than the classical CVD risk score. The ML paradigm proved to be powerful for CVD prediction in individuals at medium to high cardiovascular risk.

摘要

该研究提出了一种新的机器学习(ML)范式,用于使用来自希腊队列的 542 名患有类风湿关节炎、糖尿病或高血压的个体的数据,通过常规或基于办公室的、基于实验室的血液生物标志物和颈动脉/股动脉超声图像表型,检测中至高心血管风险个体的心血管疾病(CVD)。两种数据(CVD 风险因素和 CVD 的存在,定义为中风、心肌梗死、冠状动脉综合征、外周动脉疾病或冠心病)作为真实数据,在两个时间点收集:(i)第 1 次就诊时,(ii)3 年后的第 2 次就诊时。CVD 风险因素分为三组(常规或基于办公室的、基于实验室的血液生物标志物、颈动脉超声图像表型),以研究它们对 ML 分类器的影响。使用合成少数过采样技术(SMOTE)策略增强数据后,在两折交叉验证框架中应用了三种 ML 分类器(随机森林、支持向量机和线性判别分析)。记录了 ML 分类器的性能。在这个队列中,共有 46 个 CVD 风险因素(协变量),在一个在线心血管框架中实施,每个患者的计算时间不到 1 秒,在第 1 次就诊时,用于检测 CVD 存在的平均准确率和曲线下面积(AUC)分别为 98.40%和 0.98(p<0.0001),在第 2 次就诊时,分别为 98.39%和 0.98(p<0.0001)。心血管框架的性能明显优于经典的 CVD 风险评分。ML 范式被证明在中至高心血管风险个体的 CVD 预测中非常强大。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验