Suppr超能文献

基于 CT 和 MRI 的医学影像合成的监督式与非监督式深度学习方法比较。

Comparison of Supervised and Unsupervised Deep Learning Methods for Medical Image Synthesis between Computed Tomography and Magnetic Resonance Images.

机构信息

Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China.

Shenzhen College of Advanced Technology, University of Chinese Academy of Science, Shenzhen 518055, China.

出版信息

Biomed Res Int. 2020 Nov 5;2020:5193707. doi: 10.1155/2020/5193707. eCollection 2020.

Abstract

Cross-modality medical image synthesis between magnetic resonance (MR) images and computed tomography (CT) images has attracted increasing attention in many medical imaging area. Many deep learning methods have been used to generate pseudo-MR/CT images from counterpart modality images. In this study, we used U-Net and Cycle-Consistent Adversarial Networks (CycleGAN), which were typical networks of supervised and unsupervised deep learning methods, respectively, to transform MR/CT images to their counterpart modality. Experimental results show that synthetic images predicted by the proposed U-Net method got lower mean absolute error (MAE), higher structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR) in both directions of CT/MR synthesis, especially in synthetic CT image generation. Though synthetic images by the U-Net method has less contrast information than those by the CycleGAN method, the pixel value profile tendency of the synthetic images by the U-Net method is closer to the ground truth images. This work demonstrated that supervised deep learning method outperforms unsupervised deep learning method in accuracy for medical tasks of MR/CT synthesis.

摘要

跨模态医学图像融合,即磁共振(MR)图像和计算机断层扫描(CT)图像之间的融合,在许多医学成像领域引起了越来越多的关注。许多深度学习方法已被用于从对应模态图像生成伪 MR/CT 图像。在这项研究中,我们使用了 U-Net 和循环一致性对抗网络(CycleGAN),它们分别是监督和无监督深度学习方法的典型网络,用于将 MR/CT 图像转换为其对应模态。实验结果表明,所提出的 U-Net 方法预测的合成图像在 CT/MR 合成的两个方向上具有更低的平均绝对误差(MAE)、更高的结构相似性指数(SSIM)和峰值信噪比(PSNR),特别是在合成 CT 图像生成方面。尽管 U-Net 方法生成的合成图像的对比度信息比 CycleGAN 方法少,但 U-Net 方法生成的合成图像的像素值分布趋势更接近真实图像。这项工作表明,对于 MR/CT 合成等医学任务,监督深度学习方法的准确性优于无监督深度学习方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4284/7661122/b358f528327f/BMRI2020-5193707.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验