Suppr超能文献

基于主成分分析和光谱角制图的高光谱成像在胃癌诊断中的应用。

Gastric cancer diagnosis using hyperspectral imaging with principal component analysis and spectral angle mapper.

机构信息

Huazhong Agricultural University, College of Science, Wuhan, China.

People's Hospital of Huangpi District, Wuhan, China.

出版信息

J Biomed Opt. 2020 Jun;25(6):1-9. doi: 10.1117/1.JBO.25.6.066005.

Abstract

SIGNIFICANCE

Hyperspectral imaging (HSI) is an emerging optical technique that has a double function of spectroscopy and imaging.

AIM

Near-infrared hyperspectral imaging (NIR-HSI) (900 to 1700 nm) with the help of chemometrics was investigated for gastric cancer diagnosis.

APPROACH

Mean spectra and standard deviation of normal and cancerous pixels were extracted. Principal component analysis (PCA) was used to compress the dimension of hypercube data and select the optimal wavelengths. Moreover, spectral angle mapper (SAM) was utilized as chemometrics to discriminate gastric cancer from normal.

RESULTS

Major spectral difference of cancerous and normal gastric tissue was observed around 975, 1215, and 1450 nm by comparison. A total of six wavelengths (i.e., 975, 1075, 1215, 1275, 1390, and 1450 nm) were then selected as optimal wavelengths by PCA. The accuracy using SAM is up to 90% according to hematoxylin-eosin results.

CONCLUSIONS

These results suggest that NIR-HSI has the potential as a cutting-edge optical diagnostic technique for gastric cancer diagnosis with suitable chemometrics.

摘要

意义

高光谱成像(HSI)是一种新兴的光学技术,具有光谱和成像的双重功能。

目的

本研究旨在利用近红外高光谱成像(NIR-HSI)(900 至 1700nm)结合化学计量学方法诊断胃癌。

方法

提取正常和癌变像素的平均光谱和标准偏差。主成分分析(PCA)用于压缩超立方体数据的维度并选择最佳波长。此外,光谱角制图(SAM)被用作化学计量学方法来区分胃癌和正常组织。

结果

通过比较,在 975、1215 和 1450nm 附近观察到癌变和正常胃组织的主要光谱差异。然后通过 PCA 选择了六个最佳波长(即 975、1075、1215、1275、1390 和 1450nm)。根据苏木精-伊红结果,SAM 的准确率高达 90%。

结论

这些结果表明,NIR-HSI 具有作为一种先进的光学诊断技术用于胃癌诊断的潜力,结合适当的化学计量学方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验