Suppr超能文献

用于高度多重免疫荧光图像中像素和细胞分类的伪谱角映射

Pseudo-spectral angle mapping for pixel and cell classification in highly multiplexed immunofluorescence images.

作者信息

Torcasso Madeleine S, Ai Junting, Casella Gabriel, Cao Thao, Chang Anthony, Halper-Stromberg Ariel, Jabri Bana, Clark Marcus R, Giger Maryellen L

机构信息

The University of Chicago, Department of Radiology, Chicago, Illinois, United States.

The University of Chicago, Department of Medicine, Section on Rheumatology, Chicago, Illinois, United States.

出版信息

J Med Imaging (Bellingham). 2024 Nov;11(6):067502. doi: 10.1117/1.JMI.11.6.067502. Epub 2024 Dec 10.

Abstract

PURPOSE

The rapid development of highly multiplexed microscopy has enabled the study of cells embedded within their native tissue. The rich spatial data provided by these techniques have yielded exciting insights into the spatial features of human disease. However, computational methods for analyzing these high-content images are still emerging; there is a need for more robust and generalizable tools for evaluating the cellular constituents and stroma captured by high-plex imaging. To address this need, we have adapted spectral angle mapping-an algorithm developed for hyperspectral image analysis-to compress the channel dimension of high-plex immunofluorescence (IF) images.

APPROACH

Here, we present pseudo-spectral angle mapping (pSAM), a robust and flexible method for determining the most likely class of each pixel in a high-plex image. The class maps calculated through pSAM yield pixel classifications which can be combined with instance segmentation algorithms to classify individual cells.

RESULTS

In a dataset of colon biopsies imaged with a 13-plex staining panel, 16 pSAM class maps were computed to generate pixel classifications. Instance segmentations of cells with Cellpose2.0 ( -score of ) were combined with these class maps to provide cell class predictions for 13 cell classes. In addition, in a separate unseen dataset of kidney biopsies imaged with a 44-plex staining panel, pSAM plus Cellpose2.0 ( -score of ) detected a diverse set of 38 classes of structural and immune cells.

CONCLUSIONS

In summary, pSAM is a powerful and generalizable tool for evaluating high-plex IF image data and classifying cells in these high-dimensional images.

摘要

目的

高度多重显微镜技术的快速发展使得对嵌入其天然组织中的细胞进行研究成为可能。这些技术提供的丰富空间数据为深入了解人类疾病的空间特征带来了令人兴奋的见解。然而,用于分析这些高内涵图像的计算方法仍在不断涌现;需要更强大、更通用的工具来评估通过高多重成像捕获的细胞成分和基质。为满足这一需求,我们采用了光谱角映射法(一种为高光谱图像分析开发的算法)来压缩高多重免疫荧光(IF)图像的通道维度。

方法

在此,我们提出了伪光谱角映射法(pSAM),这是一种用于确定高多重图像中每个像素最可能类别的强大且灵活的方法。通过pSAM计算得到的类别映射产生像素分类,可与实例分割算法相结合以对单个细胞进行分类。

结果

在一个用13重染色面板成像的结肠活检数据集里,计算了16个pSAM类别映射以生成像素分类。将Cellpose2.0对细胞的实例分割( -分数为 )与这些类别映射相结合,为13种细胞类别提供细胞类别预测。此外,在一个单独的、用44重染色面板成像的肾脏活检未见数据集里,pSAM加Cellpose2.0( -分数为 )检测到了38种不同类别的结构和免疫细胞。

结论

总之,pSAM是一种用于评估高多重IF图像数据并对这些高维图像中的细胞进行分类的强大且通用的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/353d/11629784/b53ca07c0a38/JMI-011-067502-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验