Datta Niloy R, Kok H Petra, Crezee Hans, Gaipl Udo S, Bodis Stephan
Centre for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland.
Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.
Front Oncol. 2020 Jun 12;10:819. doi: 10.3389/fonc.2020.00819. eCollection 2020.
Moderate hyperthermia at temperatures between 40 and 44°C is a multifaceted therapeutic modality. It is a potent radiosensitizer, interacts favorably with a host of chemotherapeutic agents, and, in combination with radiotherapy, enforces immunomodulation akin to " tumor vaccination." By sensitizing hypoxic tumor cells and inhibiting repair of radiotherapy-induced DNA damage, the properties of hyperthermia delivered together with photons might provide a tumor-selective therapeutic advantage analogous to high linear energy transfer (LET) neutrons, but with less normal tissue toxicity. Furthermore, the high LET attributes of hyperthermia thermoradiobiologically are likely to enhance low LET protons; thus, proton thermoradiotherapy would mimic C ion therapy. Hyperthermia with radiotherapy and/or chemotherapy substantially improves therapeutic outcomes without enhancing normal tissue morbidities, yielding level I evidence reported in several randomized clinical trials, systematic reviews, and meta-analyses for various tumor sites. Technological advancements in hyperthermia delivery, advancements in hyperthermia treatment planning, online invasive and non-invasive MR-guided thermometry, and adherence to quality assurance guidelines have ensured safe and effective delivery of hyperthermia to the target region. Novel biological modeling permits integration of hyperthermia and radiotherapy treatment plans. Further, hyperthermia along with immune checkpoint inhibitors and DNA damage repair inhibitors could further augment the therapeutic efficacy resulting in synthetic lethality. Additionally, hyperthermia induced by magnetic nanoparticles coupled to selective payloads, namely, tumor-specific radiotheranostics (for both tumor imaging and radionuclide therapy), chemotherapeutic drugs, immunotherapeutic agents, and gene silencing, could provide a comprehensive tumor-specific theranostic modality akin to "magic (nano)bullets." To get a realistic overview of the strength (S), weakness (W), opportunities (O), and threats (T) of hyperthermia, a SWOT analysis has been undertaken. Additionally, a TOWS analysis categorizes future strategies to facilitate further integration of hyperthermia with the current treatment modalities. These could gainfully accomplish a safe, versatile, and cost-effective enhancement of the existing therapeutic armamentarium to improve outcomes in clinical oncology.
40至44°C之间的中度热疗是一种多方面的治疗方式。它是一种有效的放射增敏剂,能与多种化疗药物良好地相互作用,并且与放射治疗联合使用时,可实施类似于“肿瘤疫苗接种”的免疫调节。通过使缺氧肿瘤细胞敏感化并抑制放射治疗诱导的DNA损伤修复,与光子一起进行的热疗特性可能提供类似于高传能线密度(LET)中子的肿瘤选择性治疗优势,但对正常组织的毒性较小。此外,热疗在热放射生物学方面的高LET特性可能会增强低LET质子;因此,质子热放射治疗将类似于碳离子治疗。热疗与放射治疗和/或化疗联合使用可显著改善治疗效果,而不会增加正常组织的发病率,这在多项针对不同肿瘤部位的随机临床试验、系统评价和荟萃分析中都有I级证据报道。热疗实施技术的进步、热疗治疗计划的进展、在线侵入性和非侵入性磁共振引导温度测量以及对质量保证指南的遵守,确保了热疗安全有效地送达目标区域。新型生物学建模允许整合热疗和放射治疗计划。此外,热疗与免疫检查点抑制剂和DNA损伤修复抑制剂联合使用可进一步提高治疗效果,从而导致合成致死。此外,与选择性负载(即肿瘤特异性放射诊断剂(用于肿瘤成像和放射性核素治疗)、化疗药物、免疫治疗剂和基因沉默)偶联的磁性纳米颗粒诱导的热疗,可提供类似于“神奇(纳米)子弹”的全面肿瘤特异性诊疗方式。为了切实了解热疗的优势(S)、劣势(W)、机会(O)和威胁(T),已进行了SWOT分析。此外,TOWS分析对未来策略进行了分类,以促进热疗与当前治疗方式的进一步整合。这些策略可以有效地实现对现有治疗手段的安全、通用且具有成本效益的增强,从而改善临床肿瘤学的治疗效果。