School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA, 6009, Australia.
Sci Rep. 2020 Jul 9;10(1):11393. doi: 10.1038/s41598-020-68257-y.
After damage to the adult mammalian central nervous system (CNS), surviving neurons have limited capacity to regenerate and restore functional connectivity. Conditional genetic deletion of PTEN results in robust CNS axon regrowth, while PTEN repression with short hairpin RNA (shRNA) improves regeneration but to a lesser extent, likely due to suboptimal PTEN mRNA knockdown using this approach. Here we employed the CRISPR/dCas9 system to repress PTEN transcription in neural cells. We targeted the PTEN proximal promoter and 5' untranslated region with dCas9 fused to the repressor protein Krüppel-associated box (KRAB). dCas9-KRAB delivered in a lentiviral vector with one CRISPR guide RNA (gRNA) achieved potent and specific PTEN repression in human cell line models and neural cells derived from human iPSCs, and induced histone (H)3 methylation and deacetylation at the PTEN promoter. The dCas9-KRAB system outperformed a combination of four shRNAs targeting the PTEN transcript, a construct previously used in CNS injury models. The CRISPR system also worked more effectively than shRNAs for Pten repression in rat neural crest-derived PC-12 cells, and enhanced neurite outgrowth after nerve growth factor stimulation. PTEN silencing with CRISPR/dCas9 epigenetic editing may provide a new option for promoting axon regeneration and functional recovery after CNS trauma.
成年哺乳动物中枢神经系统 (CNS) 损伤后,存活的神经元再生和恢复功能连接的能力有限。条件性基因敲除 PTEN 可导致强大的 CNS 轴突再生,而短发夹 RNA (shRNA) 抑制 PTEN 则可促进再生,但程度较低,可能是由于这种方法对 PTEN mRNA 的敲低效果不理想。在这里,我们使用 CRISPR/dCas9 系统抑制神经细胞中的 PTEN 转录。我们使用 dCas9 融合到转录抑制蛋白 Krüppel 相关盒 (KRAB) 中,靶向 PTEN 近端启动子和 5'非翻译区。带有一个 CRISPR 向导 RNA (gRNA) 的慢病毒载体递送的 dCas9-KRAB 在人细胞系模型和源自人诱导多能干细胞的神经细胞中实现了强大且特异性的 PTEN 抑制,并诱导了 PTEN 启动子处的组蛋白 (H)3 甲基化和去乙酰化。dCas9-KRAB 系统的性能优于针对 PTEN 转录本的四个 shRNA 的组合,这是先前在 CNS 损伤模型中使用的构建体。该 CRISPR 系统在大鼠神经嵴源性 PC-12 细胞中也比 shRNAs 更有效地抑制 Pten,并且在神经生长因子刺激后增强了神经突生长。CRISPR/dCas9 表观遗传编辑抑制 PTEN 可能为促进 CNS 创伤后轴突再生和功能恢复提供新选择。