Suppr超能文献

解读偶然发现的卵巢病变:利用纹理分析和机器学习对恶性肿瘤进行特征描述和检测

Decoding incidental ovarian lesions: use of texture analysis and machine learning for characterization and detection of malignancy.

作者信息

Park Hyesun, Qin Lei, Guerra Pamela, Bay Camden P, Shinagare Atul B

机构信息

Department of Radiology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, 02215, USA.

出版信息

Abdom Radiol (NY). 2021 Jun;46(6):2376-2383. doi: 10.1007/s00261-020-02668-3. Epub 2020 Jul 29.

Abstract

PURPOSE

To compare CT texture features of benign and malignant ovarian lesions and to build a machine learning model to detect malignancy in incidental ovarian lesions.

METHODS

In this IRB-approved, HIPAA-compliant, retrospective study, 427 consecutive patients with incidental ovarian lesions detected on contrast-enhanced CT (348, 81.5% benign and 79, 18.5% malignant) were included. The following CT texture features were analyzed using commercially available software (TexRAD, Feedback Plc, Cambridge, UK): total pixel, mean, standard deviation (SD), entropy, mean value of positive pixels (MPP), skewness, kurtosis and entropy. Three machine learning models were created by combining texture features and patients' age, and performance of these models was assessed using tenfold cross-validation. Receiver operating characteristics (ROC) were constructed to assess sensitivity and specificity. The cutoff value was picked using a cost-weighted method.

RESULTS

Total pixels, mean, SD, entropy, MPP, and skewness were significantly different between benign and malignant groups (p < 0.05). With a selected 10 as a cost factor to optimize cutoff value selection, sensitivity 92%, specificity 60% in the random forest (RF) model, sensitivity 91%, specificity 69% in SVM model, and sensitivity 92%, specificity 61% in the logistic regression, respectively.

CONCLUSION

CT texture analysis could provide objective imaging analysis of incidental ovarian lesions and ML models using CT texture features and age demonstrated high sensitivity and moderate specificity for detection of malignant lesions.

摘要

目的

比较卵巢良恶性病变的CT纹理特征,并建立机器学习模型以检测偶然发现的卵巢病变中的恶性肿瘤。

方法

在这项经机构审查委员会(IRB)批准、符合健康保险流通与责任法案(HIPAA)的回顾性研究中,纳入了427例在增强CT上偶然发现卵巢病变的连续患者(348例,81.5%为良性;79例,18.5%为恶性)。使用商用软件(TexRAD,Feedback Plc,英国剑桥)分析以下CT纹理特征:总像素、均值、标准差(SD)、熵、阳性像素均值(MPP)、偏度、峰度和熵。通过结合纹理特征和患者年龄创建了三种机器学习模型,并使用十折交叉验证评估这些模型的性能。构建受试者操作特征(ROC)曲线以评估敏感性和特异性。使用成本加权法选择临界值。

结果

良性和恶性组之间的总像素、均值、SD、熵、MPP和偏度存在显著差异(p < 0.05)。以选定的10作为成本因子来优化临界值选择,随机森林(RF)模型的敏感性为92%,特异性为60%;支持向量机(SVM)模型的敏感性为91%,特异性为69%;逻辑回归模型的敏感性为92%,特异性为61%。

结论

CT纹理分析可为偶然发现的卵巢病变提供客观的影像分析,并且使用CT纹理特征和年龄的机器学习模型对检测恶性病变具有高敏感性和中等特异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验