Suppr超能文献

机器学习算法可识别细菌性感染脓毒症患者的临床和代谢组学特征的病原体特异性生物标志物。

Machine Learning Algorithms Identify Pathogen-Specific Biomarkers of Clinical and Metabolomic Characteristics in Septic Patients with Bacterial Infections.

机构信息

Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.

School of Software Engineering, South China University of Technology, Guangzhou, China.

出版信息

Biomed Res Int. 2020 Jul 27;2020:6950576. doi: 10.1155/2020/6950576. eCollection 2020.

Abstract

Sepsis is a high-mortality disease that is infected by bacteria, but pathogens in individual patients are difficult to diagnosis. Metabolomic changes triggered by microbial activity provide us with the possibility of accurately identifying infection. We adopted machine learning methods for training different classifiers with a clinical-metabolomic database from sepsis cases to identify the pathogen of sepsis. Records of clinical indicators and concentration of metabolites were obtained for each patient upon their arrival at the hospital. Machine learning algorithms were used in 100 patients with clear infection and corresponding 29 controls to select specific biosignatures to discriminate microorganism in septic patients. The sensitivity, specificity, and AUC value of clinical and metabolomic characteristics in predicting diagnostic outcomes were determined at admission. Our analyses demonstrate that the biosignatures selected by machine learning algorithms could have diagnostic value on the identification of infected patients and Gram-positive from Gram-negative; related AUC values were 0.94 ± 0.054 and 0.80 ± 0.085, respectively. Pathway and blood disease enrichment analyses of clinical and metabolomic biomarkers among infected patients showed that sepsis disease was accompanied by abnormal nitrogen metabolism, cell respiratory disorder, and renal or intestinal failure. The panel of selected clinical and metabolomic characteristics might be powerful biomarkers to discriminate patients with sepsis.

摘要

脓毒症是一种高死亡率的疾病,由细菌感染引起,但个体患者的病原体很难诊断。微生物活动引发的代谢组学变化为我们准确识别感染提供了可能。我们采用机器学习方法,利用脓毒症病例的临床代谢组学数据库来训练不同的分类器,以识别脓毒症的病原体。每位患者入院时都会记录其临床指标和代谢物浓度。我们使用机器学习算法对 100 名明确感染的患者和 29 名对照患者进行了分析,以选择特定的生物标志物来区分脓毒症患者中的微生物。在入院时确定了临床和代谢组学特征预测诊断结果的敏感性、特异性和 AUC 值。我们的分析表明,机器学习算法选择的生物标志物对识别感染患者和革兰阳性菌与革兰阴性菌具有诊断价值;相关 AUC 值分别为 0.94±0.054 和 0.80±0.085。感染患者的临床和代谢组学生物标志物的通路和血液病富集分析表明,脓毒症疾病伴随着异常的氮代谢、细胞呼吸障碍以及肾或肠衰竭。选择的临床和代谢组学特征组合可能是区分脓毒症患者的有力生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验