Suppr超能文献

Semixup:基于X线平片的深度半监督膝关节骨关节炎严重程度分级的流形内和流形外正则化

Semixup: In- and Out-of-Manifold Regularization for Deep Semi-Supervised Knee Osteoarthritis Severity Grading From Plain Radiographs.

作者信息

Nguyen Huy Hoang, Saarakkala Simo, Blaschko Matthew B, Tiulpin Aleksei

出版信息

IEEE Trans Med Imaging. 2020 Dec;39(12):4346-4356. doi: 10.1109/TMI.2020.3017007. Epub 2020 Nov 30.

Abstract

Knee osteoarthritis (OA) is one of the highest disability factors in the world. This musculoskeletal disorder is assessed from clinical symptoms, and typically confirmed via radiographic assessment. This visual assessment done by a radiologist requires experience, and suffers from moderate to high inter-observer variability. The recent literature has shown that deep learning methods can reliably perform the OA severity assessment according to the gold standard Kellgren-Lawrence (KL) grading system. However, these methods require large amounts of labeled data, which are costly to obtain. In this study, we propose the Semixup algorithm, a semi-supervised learning (SSL) approach to leverage unlabeled data. Semixup relies on consistency regularization using in- and out-of-manifold samples, together with interpolated consistency. On an independent test set, our method significantly outperformed other state-of-the-art SSL methods in most cases. Finally, when compared to a well-tuned fully supervised baseline that yielded a balanced accuracy (BA) of 70.9 ± 0.8% on the test set, Semixup had comparable performance - BA of 71 ± 0.8% ( p=0.368 ) while requiring 6 times less labeled data. These results show that our proposed SSL method allows building fully automatic OA severity assessment tools with datasets that are available outside research settings.

摘要

膝关节骨关节炎(OA)是全球致残率最高的因素之一。这种肌肉骨骼疾病通过临床症状进行评估,通常通过影像学评估来确诊。放射科医生进行的这种视觉评估需要经验,并且观察者间的变异性从中度到高度不等。最近的文献表明,深度学习方法可以根据金标准凯尔格伦 - 劳伦斯(KL)分级系统可靠地进行骨关节炎严重程度评估。然而,这些方法需要大量的标记数据,获取成本很高。在本研究中,我们提出了Semixup算法,这是一种利用未标记数据的半监督学习(SSL)方法。Semixup依赖于使用流形内和流形外样本的一致性正则化以及插值一致性。在一个独立测试集上,我们的方法在大多数情况下显著优于其他现有最先进的SSL方法。最后,与在测试集上获得平衡准确率(BA)为70.9 ± 0.8%的经过良好调优的全监督基线相比,Semixup具有相当的性能——BA为71 ± 0.8%(p = 0.368),同时所需的标记数据少6倍。这些结果表明,我们提出的SSL方法允许使用研究环境之外可用的数据集构建全自动骨关节炎严重程度评估工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验