Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA.
California Institute for Quantitative Biosciences (QB3), University of California Berkeley, Berkeley, CA, USA.
Nat Protoc. 2020 Sep;15(9):3064-3087. doi: 10.1038/s41596-020-0370-0. Epub 2020 Aug 17.
Targeted downregulation of select endogenous plant genes is known to confer disease or pest resistance in crops and is routinely accomplished via transgenic modification of plants for constitutive gene silencing. An attractive alternative to the use of transgenics or pesticides in agriculture is the use of a 'green' alternative known as RNAi, which involves the delivery of siRNAs that downregulate endogenous genes to confer resistance. However, siRNA is a molecule that is highly susceptible to enzymatic degradation and is difficult to deliver across the lignin-rich and multi-layered plant cell wall that poses the dominant physical barrier to biomolecule delivery in plants. We have demonstrated that DNA nanostructures can be utilized as a cargo carrier for direct siRNA delivery and gene silencing in mature plants. The size, shape, compactness and stiffness of the DNA nanostructure affect both internalization into plant cells and subsequent gene silencing efficiency. Herein, we provide a detailed protocol that can be readily adopted with standard biology benchtop equipment to generate geometrically optimized DNA nanostructures for transgene-free and force-independent siRNA delivery and gene silencing in mature plants. We further discuss how such DNA nanostructures can be rationally designed to efficiently enter plant cells and deliver cargoes to mature plants, and provide guidance for DNA nanostructure characterization, storage and use. The protocol described herein can be completed in 4 d.
已知靶向下调某些内源性植物基因可赋予作物疾病或害虫抗性,并且通常通过对植物进行组成型基因沉默的转基因修饰来实现。在农业中替代使用转基因或农药的一种有吸引力的方法是使用一种称为 RNAi 的“绿色”替代方法,它涉及递送至内源性基因下调以赋予抗性的 siRNA。然而,siRNA 是一种极易受到酶降解的分子,并且难以递送至木质素丰富和多层植物细胞壁,该细胞壁是生物分子在植物中递送至的主要物理障碍。我们已经证明,DNA 纳米结构可用作直接 siRNA 递送至成熟植物中的载体,并进行基因沉默。DNA 纳米结构的大小、形状、紧凑性和刚性都会影响其进入植物细胞的内化能力以及随后的基因沉默效率。在此,我们提供了一个详细的方案,该方案可以使用标准生物学台式设备轻松采用,以生成用于无转基因和无外力的 siRNA 递送至成熟植物中的基因沉默的几何优化的 DNA 纳米结构。我们进一步讨论了如何合理设计这些 DNA 纳米结构以有效地进入植物细胞并将货物递送至成熟植物,并为 DNA 纳米结构的表征、储存和使用提供指导。本文所述的方案可以在 4 天内完成。