Suppr超能文献

多参数深度学习模型预测胶质母细胞瘤患者术后同步放化疗后的总生存期

Multi-Parametric Deep Learning Model for Prediction of Overall Survival after Postoperative Concurrent Chemoradiotherapy in Glioblastoma Patients.

作者信息

Yoon Han Gyul, Cheon Wonjoong, Jeong Sang Woon, Kim Hye Seung, Kim Kyunga, Nam Heerim, Han Youngyih, Lim Do Hoon

机构信息

Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.

Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University School of Medicine, Seoul 06351, Korea.

出版信息

Cancers (Basel). 2020 Aug 14;12(8):2284. doi: 10.3390/cancers12082284.

Abstract

This study aimed to investigate the performance of a deep learning-based survival-prediction model, which predicts the overall survival (OS) time of glioblastoma patients who have received surgery followed by concurrent chemoradiotherapy (CCRT). The medical records of glioblastoma patients who had received surgery and CCRT between January 2011 and December 2017 were retrospectively reviewed. Based on our inclusion criteria, 118 patients were selected and semi-randomly allocated to training and test datasets (3:1 ratio, respectively). A convolutional neural network-based deep learning model was trained with magnetic resonance imaging (MRI) data and clinical profiles to predict OS. The MRI was reconstructed by using four pulse sequences (22 slices) and nine images were selected based on the longest slice of glioblastoma by a physician for each pulse sequence. The clinical profiles consist of personal, genetic, and treatment factors. The concordance index (C-index) and integrated area under the curve (iAUC) of the time-dependent area-under-the-curve curves of each model were calculated to evaluate the performance of the survival-prediction models. The model that incorporated clinical and radiomic features showed a higher C-index (0.768 (95% confidence interval (CI): 0.759, 0.776)) and iAUC (0.790 (95% CI: 0.783, 0.797)) than the model using clinical features alone (C-index = 0.693 (95% CI: 0.685, 0.701); iAUC = 0.723 (95% CI: 0.716, 0.731)) and the model using radiomic features alone (C-index = 0.590 (95% CI: 0.579, 0.600); iAUC = 0.614 (95% CI: 0.607, 0.621)). These improvements to the C-indexes and iAUCs were validated using the 1000-times bootstrapping method; all were statistically significant ( < 0.001). This study suggests the synergistic benefits of using both clinical and radiomic parameters. Furthermore, it indicates the potential of multi-parametric deep learning models for the survival prediction of glioblastoma patients.

摘要

本研究旨在调查一种基于深度学习的生存预测模型的性能,该模型可预测接受手术及同步放化疗(CCRT)的胶质母细胞瘤患者的总生存(OS)时间。回顾性分析了2011年1月至2017年12月期间接受手术和CCRT的胶质母细胞瘤患者的病历。根据纳入标准,选择了118例患者并将其半随机分配到训练和测试数据集(比例分别为3:1)。使用磁共振成像(MRI)数据和临床资料训练基于卷积神经网络的深度学习模型来预测OS。通过使用四个脉冲序列(22层)重建MRI,并由医生根据每个脉冲序列中胶质母细胞瘤最长的层面选择九幅图像。临床资料包括个人、基因和治疗因素。计算每个模型的时间依赖性曲线下面积曲线的一致性指数(C指数)和综合曲线下面积(iAUC),以评估生存预测模型的性能。纳入临床和影像组学特征的模型显示出比仅使用临床特征的模型(C指数 = 0.693(95%置信区间(CI):0.685,0.701);iAUC = 0.723(95%CI:0.716,0.731))和仅使用影像组学特征的模型(C指数 = 0.590(95%CI:0.579,0.600);iAUC = 0.614(95%CI:0.607,0.621))更高的C指数(0.768(95%CI:0.759,0.776))和iAUC(0.790(95%CI:0.783,0.797))。使用1000次自抽样方法验证了C指数和iAUC的这些改善;所有结果均具有统计学意义(<0.001)。本研究表明使用临床和影像组学参数具有协同效益。此外,它还表明了多参数深度学习模型在胶质母细胞瘤患者生存预测方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c4d/7465791/15deece9915e/cancers-12-02284-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验