Suppr超能文献

用于复杂分隔式微流控神经装置的3D打印软光刻技术

3D-Printed Soft Lithography for Complex Compartmentalized Microfluidic Neural Devices.

作者信息

Kajtez Janko, Buchmann Sebastian, Vasudevan Shashank, Birtele Marcella, Rocchetti Stefano, Pless Christian Jonathan, Heiskanen Arto, Barker Roger A, Martínez-Serrano Alberto, Parmar Malin, Lind Johan Ulrik, Emnéus Jenny

机构信息

Department of Experimental Medical Sciences Wallenberg Neuroscience Center Division of Neurobiology and Lund Stem Cell Center BMC A11 Lund University Lund S-22184 Sweden.

Department of Biotechnology and Biomedicine (DTU Bioengineering) Technical University of Denmark Produktionstorvet, Building 423 Lyngby 2800 Kgs. Denmark.

出版信息

Adv Sci (Weinh). 2020 Jun 15;7(16):2001150. doi: 10.1002/advs.202001150. eCollection 2020 Aug.

Abstract

Compartmentalized microfluidic platforms are an invaluable tool in neuroscience research. However, harnessing the full potential of this technology remains hindered by the lack of a simple fabrication approach for the creation of intricate device architectures with high-aspect ratio features. Here, a hybrid additive manufacturing approach is presented for the fabrication of open-well compartmentalized neural devices that provides larger freedom of device design, removes the need for manual postprocessing, and allows an increase in the biocompatibility of the system. Suitability of the method for multimaterial integration allows to tailor the device architecture for the long-term maintenance of healthy human stem-cell derived neurons and astrocytes, spanning at least 40 days. Leveraging fast-prototyping capabilities at both micro and macroscale, a proof-of-principle human in vitro model of the nigrostriatal pathway is created. By presenting a route for novel materials and unique architectures in microfluidic systems, the method provides new possibilities in biological research beyond neuroscience applications.

摘要

分区微流控平台是神经科学研究中一项非常有价值的工具。然而,由于缺乏一种简单的制造方法来创建具有高纵横比特征的复杂器件架构,该技术的全部潜力仍受到阻碍。在此,提出了一种混合增材制造方法来制造开放式隔室神经装置,该方法提供了更大的器件设计自由度,无需手动后处理,并提高了系统的生物相容性。该方法对多材料集成的适用性允许定制器件架构,以长期维持健康的人类干细胞衍生神经元和星形胶质细胞,至少持续40天。利用微观和宏观尺度的快速原型制作能力,创建了黑质纹状体通路的原理验证人体体外模型。通过展示微流控系统中新型材料和独特架构的途径,该方法为神经科学应用之外的生物学研究提供了新的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de2b/7435242/baf428c85c4a/ADVS-7-2001150-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验