Candemir Sema, Nguyen Xuan V, Prevedello Luciano M, Bigelow Matthew T, White Richard D, Erdal Barbaros S
The Ohio State University College of Medicine, Laboratory for Augmented Intelligence in Imaging, Department of Radiology, Columbus, Ohio, United States.
J Med Imaging (Bellingham). 2020 Jul;7(4):044501. doi: 10.1117/1.JMI.7.4.044501. Epub 2020 Aug 12.
Our study investigates whether a machine-learning-based system can predict the rate of cognitive decline in mildly cognitively impaired patients by processing only the clinical and imaging data collected at the initial visit. We built a predictive model based on a supervised hybrid neural network utilizing a three-dimensional convolutional neural network to perform volume analysis of magnetic resonance imaging (MRI) and integration of nonimaging clinical data at the fully connected layer of the architecture. The experiments are conducted on the Alzheimer's Disease Neuroimaging Initiative dataset. Experimental results confirm that there is a correlation between cognitive decline and the data obtained at the first visit. The system achieved an area under the receiver operator curve of 0.70 for cognitive decline class prediction. To our knowledge, this is the first study that predicts "slowly deteriorating/stable" or "rapidly deteriorating" classes by processing routinely collected baseline clinical and demographic data [baseline MRI, baseline mini-mental state examination (MMSE), scalar volumetric data, age, gender, education, ethnicity, and race]. The training data are built based on MMSE-rate values. Unlike the studies in the literature that focus on predicting mild cognitive impairment (MCI)-to-Alzheimer's disease conversion and disease classification, we approach the problem as an early prediction of cognitive decline rate in MCI patients.
我们的研究旨在探究基于机器学习的系统能否仅通过处理初诊时收集的临床和影像数据,来预测轻度认知障碍患者的认知衰退率。我们基于一个有监督的混合神经网络构建了一个预测模型,该网络利用三维卷积神经网络对磁共振成像(MRI)进行体积分析,并在架构的全连接层整合非影像临床数据。实验在阿尔茨海默病神经影像倡议数据集上进行。实验结果证实,认知衰退与初诊时获得的数据之间存在相关性。该系统在认知衰退类别预测方面,受试者工作特征曲线下面积达到了0.70。据我们所知,这是第一项通过处理常规收集的基线临床和人口统计学数据[基线MRI、基线简易精神状态检查表(MMSE)、标量体积数据、年龄、性别、教育程度、种族和民族]来预测“缓慢恶化/稳定”或“快速恶化”类别的研究。训练数据是基于MMSE速率值构建的。与文献中专注于预测轻度认知障碍(MCI)向阿尔茨海默病转化及疾病分类的研究不同,我们将该问题视为对MCI患者认知衰退率的早期预测。
J Med Imaging (Bellingham). 2020-7
Alzheimer Dis Assoc Disord. 2021
Risk Manag Healthc Policy. 2025-6-3
Radiol Artif Intell. 2021-10-6
Mach Learn Med Imaging. 2018-9
Geriatrics (Basel). 2016-4-25
Semin Neurol. 2019-4
Med Image Anal. 2017-7-26