文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用具有多数据分析的深度神经网络预测基线时的认知衰退率。

Predicting rate of cognitive decline at baseline using a deep neural network with multidata analysis.

作者信息

Candemir Sema, Nguyen Xuan V, Prevedello Luciano M, Bigelow Matthew T, White Richard D, Erdal Barbaros S

机构信息

The Ohio State University College of Medicine, Laboratory for Augmented Intelligence in Imaging, Department of Radiology, Columbus, Ohio, United States.

出版信息

J Med Imaging (Bellingham). 2020 Jul;7(4):044501. doi: 10.1117/1.JMI.7.4.044501. Epub 2020 Aug 12.


DOI:10.1117/1.JMI.7.4.044501
PMID:32832577
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7419712/
Abstract

Our study investigates whether a machine-learning-based system can predict the rate of cognitive decline in mildly cognitively impaired patients by processing only the clinical and imaging data collected at the initial visit. We built a predictive model based on a supervised hybrid neural network utilizing a three-dimensional convolutional neural network to perform volume analysis of magnetic resonance imaging (MRI) and integration of nonimaging clinical data at the fully connected layer of the architecture. The experiments are conducted on the Alzheimer's Disease Neuroimaging Initiative dataset. Experimental results confirm that there is a correlation between cognitive decline and the data obtained at the first visit. The system achieved an area under the receiver operator curve of 0.70 for cognitive decline class prediction. To our knowledge, this is the first study that predicts "slowly deteriorating/stable" or "rapidly deteriorating" classes by processing routinely collected baseline clinical and demographic data [baseline MRI, baseline mini-mental state examination (MMSE), scalar volumetric data, age, gender, education, ethnicity, and race]. The training data are built based on MMSE-rate values. Unlike the studies in the literature that focus on predicting mild cognitive impairment (MCI)-to-Alzheimer's disease conversion and disease classification, we approach the problem as an early prediction of cognitive decline rate in MCI patients.

摘要

我们的研究旨在探究基于机器学习的系统能否仅通过处理初诊时收集的临床和影像数据,来预测轻度认知障碍患者的认知衰退率。我们基于一个有监督的混合神经网络构建了一个预测模型,该网络利用三维卷积神经网络对磁共振成像(MRI)进行体积分析,并在架构的全连接层整合非影像临床数据。实验在阿尔茨海默病神经影像倡议数据集上进行。实验结果证实,认知衰退与初诊时获得的数据之间存在相关性。该系统在认知衰退类别预测方面,受试者工作特征曲线下面积达到了0.70。据我们所知,这是第一项通过处理常规收集的基线临床和人口统计学数据[基线MRI、基线简易精神状态检查表(MMSE)、标量体积数据、年龄、性别、教育程度、种族和民族]来预测“缓慢恶化/稳定”或“快速恶化”类别的研究。训练数据是基于MMSE速率值构建的。与文献中专注于预测轻度认知障碍(MCI)向阿尔茨海默病转化及疾病分类的研究不同,我们将该问题视为对MCI患者认知衰退率的早期预测。

相似文献

[1]
Predicting rate of cognitive decline at baseline using a deep neural network with multidata analysis.

J Med Imaging (Bellingham). 2020-7

[2]
A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.

Neuroimage. 2019-1-14

[3]
Predicting Mental Decline Rates in Mild Cognitive Impairment From Baseline MRI Volumetric Data.

Alzheimer Dis Assoc Disord. 2021

[4]
Deep learning prediction of mild cognitive impairment conversion to Alzheimer's disease at 3 years after diagnosis using longitudinal and whole-brain 3D MRI.

PeerJ Comput Sci. 2021-5-25

[5]
ApoE4 effects on automated diagnostic classifiers for mild cognitive impairment and Alzheimer's disease.

Neuroimage Clin. 2014-1-4

[6]
Machine learning methods for predicting progression from mild cognitive impairment to Alzheimer's disease dementia: a systematic review.

Alzheimers Res Ther. 2021-9-28

[7]
Cloud-Based Brain Magnetic Resonance Image Segmentation and Parcellation System for Individualized Prediction of Cognitive Worsening.

J Healthc Eng. 2019-1-29

[8]
Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer's disease.

Neuroimage Clin. 2021

[9]
Mini-Mental State Examination (MMSE) for the detection of Alzheimer's disease and other dementias in people with mild cognitive impairment (MCI).

Cochrane Database Syst Rev. 2015-3-5

[10]
Disrupted Balance of Gray Matter Volume and Directed Functional Connectivity in Mild Cognitive Impairment and Alzheimer's Disease.

Curr Alzheimer Res. 2023

引用本文的文献

[1]
An integrated predictive model for Alzheimer's disease progression from cognitively normal subjects using generated MRI and interpretable AI.

Sci Rep. 2025-8-4

[2]
Inequalities in Mild Cognitive Impairment Risk Among Chinese Middle-Aged and Older Adults: Insights from an Integrated Learning Model.

Risk Manag Healthc Policy. 2025-6-3

[3]
Detecting and Characterizing Inferior Vena Cava Filters on Abdominal Computed Tomography with Data-Driven Computational Frameworks.

J Digit Imaging. 2023-12

[4]
Training Strategies for Radiology Deep Learning Models in Data-limited Scenarios.

Radiol Artif Intell. 2021-10-6

[5]
Machine learning for modeling the progression of Alzheimer disease dementia using clinical data: a systematic literature review.

JAMIA Open. 2021-8-2

本文引用的文献

[1]
End-To-End Alzheimer's Disease Diagnosis and Biomarker Identification.

Mach Learn Med Imaging. 2018-9

[2]
Prognosis of Early-Onset Late-Onset Mild Cognitive Impairment: Comparison of Conversion Rates and Its Predictors.

Geriatrics (Basel). 2016-4-25

[3]
A Multifactor Approach to Mild Cognitive Impairment.

Semin Neurol. 2019-4

[4]
Predicting Alzheimer's disease progression using multi-modal deep learning approach.

Sci Rep. 2019-2-13

[5]
A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.

Neuroimage. 2019-1-14

[6]
Fusion of deep learning models of MRI scans, Mini-Mental State Examination, and logical memory test enhances diagnosis of mild cognitive impairment.

Alzheimers Dement (Amst). 2018-9-28

[7]
Convolutional Neural Networks-Based MRI Image Analysis for the Alzheimer's Disease Prediction From Mild Cognitive Impairment.

Front Neurosci. 2018-11-5

[8]
Multimodal and Multiscale Deep Neural Networks for the Early Diagnosis of Alzheimer's Disease using structural MR and FDG-PET images.

Sci Rep. 2018-4-9

[9]
Random forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healhy elderly, MCI, cMCI and alzheimer's disease patients: From the alzheimer's disease neuroimaging initiative (ADNI) database.

J Neurosci Methods. 2017-12-18

[10]
A survey on deep learning in medical image analysis.

Med Image Anal. 2017-7-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索