Suppr超能文献

对大麻属植物化学型的大规模样本进行大麻素建模。

Modeling cannabinoids from a large-scale sample of Cannabis sativa chemotypes.

机构信息

Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America.

Front Range Biosciences, Lafayette, CO, United States of America.

出版信息

PLoS One. 2020 Sep 1;15(9):e0236878. doi: 10.1371/journal.pone.0236878. eCollection 2020.

Abstract

The widespread legalization of Cannabis has opened the industry to using contemporary analytical techniques for chemotype analysis. Chemotypic data has been collected on a large variety of oil profiles inherent to the cultivars that are commercially available. The unknown gene regulation and pharmacokinetics of dozens of cannabinoids offer opportunities of high interest in pharmacology research. Retailers in many medical and recreational jurisdictions are typically required to report chemical concentrations of at least some cannabinoids. Commercial cannabis laboratories have collected large chemotype datasets of diverse Cannabis cultivars. In this work a data set of 17,600 cultivars tested by Steep Hill Inc., is examined using machine learning techniques to interpolate missing chemotype observations and cluster cultivars into groups based on chemotype similarity. The results indicate cultivars cluster based on their chemotypes, and that some imputation methods work better than others at grouping these cultivars based on chemotypic identity. Due to the missing data and to the low signal to noise ratio for some less common cannabinoids, their behavior could not be accurately predicted. These findings have implications for characterizing complex interactions in cannabinoid biosynthesis and improving phenotypical classification of Cannabis cultivars.

摘要

大麻的广泛合法化使该行业能够使用现代分析技术进行化学型分析。已经收集了大量商业上可获得的品种所固有的油谱的化学型数据。数十种大麻素的未知基因调控和药代动力学为药理学研究提供了高度关注的机会。许多医疗和娱乐司法管辖区的零售商通常需要报告至少一些大麻素的化学浓度。商业大麻实验室已经收集了大量不同大麻品种的化学型数据集。在这项工作中,使用机器学习技术检查了 Steep Hill Inc. 测试的 17600 个品种的数据集,以插值缺失的化学型观察值,并根据化学型相似性将品种聚类成组。结果表明,品种根据其化学型聚类,并且一些插补方法在根据化学型同一性对这些品种进行分组方面比其他方法效果更好。由于存在缺失数据以及某些较少见的大麻素的信噪比低,因此无法准确预测它们的行为。这些发现对于表征大麻素生物合成中的复杂相互作用以及改善大麻品种的表型分类具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9f8/7462266/57866812ab74/pone.0236878.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验