Suppr超能文献

在社会网络研究中选择社区检测算法的指南:问题对齐方法。

A Guide for Choosing Community Detection Algorithms in Social Network Studies: The Question Alignment Approach.

机构信息

Department of Health Policy and Management, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

出版信息

Am J Prev Med. 2020 Oct;59(4):597-605. doi: 10.1016/j.amepre.2020.04.015.

Abstract

INTRODUCTION

Community detection, the process of identifying subgroups of highly connected individuals within a network, is an aspect of social network analysis that is relevant but potentially underutilized in prevention research. Guidance on using community detection methods stresses aligning methods with specific research questions but lacks clear operationalization. The Question Alignment approach was developed to help address this gap and promote the high-quality use of community detection methods.

METHODS

A total of 6 community detection methods are discussed: Walktrap, Edge-Betweenness, Infomap, Louvain, Label Propagation, and Spinglass. The Question Alignment approach is described and demonstrated using real-world data collected in 2013. This hypothetical case study was conducted in 2019 and focused on targeting a hand hygiene intervention to high-risk communities to prevent influenza transmission.

RESULTS

Community detection using the Walktrap method best fit the hypothetical case study. The communities derived using the Walktrap method were quite different from communities derived through the other 5 methods in both the number of communities and individuals within communities. There was evidence to support that the Question Alignment approach can help researchers produce more useful community detection results. Compared to other methods of selecting high-risk groups, the Walktrap produced the most communities that met the hypothetical intervention requirements.

CONCLUSIONS

As prevention research incorporating social networks increases, researchers can use the Question Alignment approach to produce more theoretically meaningful results and potentially more useful results for practice. Future research should focus on assessing whether the Question Alignment approach translates into improved intervention results.

摘要

简介

社区检测是识别网络中高度连接个体亚组的过程,是社交网络分析的一个方面,在预防研究中具有相关性,但可能未被充分利用。关于使用社区检测方法的指南强调了将方法与特定研究问题保持一致,但缺乏明确的操作化。问题对齐方法是为了解决这一差距并促进社区检测方法的高质量使用而开发的。

方法

共讨论了 6 种社区检测方法:Walktrap、Edge-Betweenness、Infomap、Louvain、Label Propagation 和 Spinglass。描述并展示了使用 2013 年收集的真实数据的问题对齐方法。这个假设性案例研究于 2019 年进行,重点是针对高风险社区进行手卫生干预以预防流感传播。

结果

Walktrap 方法的社区检测最适合假设案例研究。通过 Walktrap 方法得出的社区在社区数量和社区内个体方面与通过其他 5 种方法得出的社区有很大的不同。有证据支持问题对齐方法可以帮助研究人员产生更有用的社区检测结果。与其他选择高风险群体的方法相比,Walktrap 产生的符合假设干预要求的社区最多。

结论

随着包含社交网络的预防研究的增加,研究人员可以使用问题对齐方法来产生更具理论意义的结果,并且可能对实践更有用的结果。未来的研究应侧重于评估问题对齐方法是否转化为干预结果的改善。

相似文献

1
2
Topological and functional comparison of community detection algorithms in biological networks.
BMC Bioinformatics. 2019 Apr 27;20(1):212. doi: 10.1186/s12859-019-2746-0.
3
A Monte Carlo Evaluation of Weighted Community Detection Algorithms.
Front Neuroinform. 2016 Nov 10;10:45. doi: 10.3389/fninf.2016.00045. eCollection 2016.
5
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
6
Characterizing Twitter Discussions About HPV Vaccines Using Topic Modeling and Community Detection.
J Med Internet Res. 2016 Aug 29;18(8):e232. doi: 10.2196/jmir.6045.
9
Comparing community detection algorithms in psychometric networks: A Monte Carlo simulation.
Behav Res Methods. 2024 Mar;56(3):1485-1505. doi: 10.3758/s13428-023-02106-4. Epub 2023 Jun 2.
10
On the Detection of Overlapped Network Communities via Weight Redistributions.
Adv Exp Med Biol. 2017;988:205-214. doi: 10.1007/978-3-319-56246-9_16.

引用本文的文献

1
Dynamics of post fire plant community assembly in Doñana coastal dunes.
Sci Rep. 2025 Jun 6;15(1):19935. doi: 10.1038/s41598-025-04400-x.
4
SciGeneX: enhancing transcriptional analysis through gene module detection in single-cell and spatial transcriptomics data.
NAR Genom Bioinform. 2025 Apr 17;7(2):lqaf043. doi: 10.1093/nargab/lqaf043. eCollection 2025 Jun.
6
Exploring the Associations of Afterschool Science Participation and Friendships with Science Identities.
Res Sci Educ. 2024;54(6):1155-1172. doi: 10.1007/s11165-024-10173-6. Epub 2024 Jun 20.
8
Symptom clusters and impact on quality of life in lung cancer patients undergoing chemotherapy.
Qual Life Res. 2024 Dec;33(12):3363-3375. doi: 10.1007/s11136-024-03778-x. Epub 2024 Sep 6.
9
Analysis of the swine movement network in Mexico: A perspective for disease prevention and control.
PLoS One. 2024 Aug 30;19(8):e0309369. doi: 10.1371/journal.pone.0309369. eCollection 2024.
10
Data science's cultural construction: qualitative ideas for quantitative work.
Front Big Data. 2024 Aug 14;7:1287442. doi: 10.3389/fdata.2024.1287442. eCollection 2024.

本文引用的文献

1
Social network interventions for health behaviours and outcomes: A systematic review and meta-analysis.
PLoS Med. 2019 Sep 3;16(9):e1002890. doi: 10.1371/journal.pmed.1002890. eCollection 2019 Sep.
2
Assessing the robustness of cluster solutions obtained from sparse count matrices.
Psychol Methods. 2019 Dec;24(6):675-689. doi: 10.1037/met0000204. Epub 2019 Feb 11.
4
Interventions to improve hand hygiene compliance in patient care.
Cochrane Database Syst Rev. 2017 Sep 1;9(9):CD005186. doi: 10.1002/14651858.CD005186.pub4.
5
The ground truth about metadata and community detection in networks.
Sci Adv. 2017 May 3;3(5):e1602548. doi: 10.1126/sciadv.1602548. eCollection 2017 May.
6
Automated Delineation of Hospital Service Areas and Hospital Referral Regions by Modularity Optimization.
Health Serv Res. 2018 Feb;53(1):236-255. doi: 10.1111/1475-6773.12616. Epub 2016 Nov 16.
8
Multiple contexts and adolescent body mass index: Schools, neighborhoods, and social networks.
Soc Sci Med. 2016 Aug;162:21-31. doi: 10.1016/j.socscimed.2016.06.002. Epub 2016 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验