Institute of Work and Organizational Psychology, University of Neuchâtel, Neuchâtel, NE, Switzerland.
Department of Psychology, The City College of the City University of New York, New York City, NY, USA.
J Psychosom Res. 2020 Nov;138:110249. doi: 10.1016/j.jpsychores.2020.110249. Epub 2020 Sep 15.
Depressive symptoms induced by insurmountable job stress and sick leave for mental health reasons have become a focal concern among occupational health specialists. The present study introduces the Occupational Depression Inventory (ODI), a measure designed to quantify the severity of work-attributed depressive symptoms and establish provisional diagnoses of job-ascribed depression. The ODI comprises nine symptom items and a subsidiary question assessing turnover intention.
A total of 2254 employed individuals were recruited in the U.S., New Zealand, and France. We examined the psychometric and structural properties of the ODI as well as the nomological network of work-attributed depressive symptoms. We adopted an approach centered on exploratory structural equation modeling (ESEM) bifactor analysis. We developed a diagnostic algorithm for identifying likely cases of job-ascribed depression (SPSS syntax provided).
The ODI showed strong reliability and high factorial validity. ESEM bifactor analysis indicated that, as intended, the ODI can be used as a unidimensional measure (Explained Common Variance = 0.891). Work-attributed depressive symptoms correlated in the expected direction with our other variables of interest-e.g., job satisfaction, general health status-and were markedly associated with turnover intention. Of our 2254 participants, 7.6% (n = 172) met the criteria for a provisional diagnosis of job-ascribed depression.
This study suggests that the ODI constitutes a sound measure of work-attributed depressive symptoms. The ODI may help occupational health researchers and practitioners identify, track, and treat job-ascribed depression more effectively. ODI-based research may contribute to informing occupational health policies and regulations in the future.
由于无法克服的工作压力和因心理健康原因请病假而导致的抑郁症状,已成为职业健康专家关注的焦点。本研究引入了职业抑郁量表(ODI),该量表用于量化与工作相关的抑郁症状的严重程度,并对归因于工作的抑郁症进行临时诊断。ODI 包含九个症状项目和一个评估离职意向的辅助问题。
我们在美国、新西兰和法国共招募了 2254 名在职人员。我们检验了 ODI 的心理测量学和结构特性以及与工作相关的抑郁症状的效标网络。我们采用了以探索性结构方程建模(ESEM)双因素分析为中心的方法。我们开发了一种用于识别可能归因于工作的抑郁症病例的诊断算法(提供了 SPSS 语法)。
ODI 表现出很强的可靠性和高的因子有效性。ESEM 双因素分析表明,正如预期的那样,ODI 可以作为一个单维测量工具(解释共同方差=0.891)。与工作相关的抑郁症状与我们其他感兴趣的变量呈预期方向相关,例如工作满意度、一般健康状况,并且与离职意向显著相关。在我们的 2254 名参与者中,有 7.6%(n=172)符合归因于工作的抑郁症的临时诊断标准。
这项研究表明,ODI 是一种衡量与工作相关的抑郁症状的可靠工具。ODI 可能有助于职业健康研究人员和从业者更有效地识别、跟踪和治疗归因于工作的抑郁症。基于 ODI 的研究可能有助于为未来的职业健康政策和法规提供信息。