Département de génie électrique et de génie informatique, Université Laval, Québec, QC, G1V 0A6, Canada.
CERVO Brain Research Center, 2601 de la Canardière, Québec, QC, G1J 2G3, Canada.
Nat Commun. 2018 Dec 7;9(1):5247. doi: 10.1038/s41467-018-07668-y.
Traditional approaches for finding well-performing parameterizations of complex imaging systems, such as super-resolution microscopes rely on an extensive exploration phase over the illumination and acquisition settings, prior to the imaging task. This strategy suffers from several issues: it requires a large amount of parameter configurations to be evaluated, it leads to discrepancies between well-performing parameters in the exploration phase and imaging task, and it results in a waste of time and resources given that optimization and final imaging tasks are conducted separately. Here we show that a fully automated, machine learning-based system can conduct imaging parameter optimization toward a trade-off between several objectives, simultaneously to the imaging task. Its potential is highlighted on various imaging tasks, such as live-cell and multicolor imaging and multimodal optimization. This online optimization routine can be integrated to various imaging systems to increase accessibility, optimize performance and improve overall imaging quality.
传统的寻找复杂成像系统(如超分辨率显微镜)性能良好的参数化方法依赖于在成像任务之前,通过广泛的照明和采集设置探索阶段来进行。这种策略存在几个问题:它需要评估大量的参数配置,导致在探索阶段和成像任务中表现良好的参数之间存在差异,并且由于优化和最终成像任务是分开进行的,因此浪费了时间和资源。在这里,我们表明,基于机器学习的全自动系统可以在几个目标之间进行成像参数优化,同时进行成像任务。它在各种成像任务中的潜力得到了强调,例如活细胞和多色成像以及多模式优化。这种在线优化例程可以集成到各种成像系统中,以提高可访问性、优化性能和提高整体成像质量。