Petrova Valentina A, Khripunov Albert K, Golovkin Alexey S, Mishanin Alexander I, Gofman Iosif V, Romanov Dmitry P, Migunova Alexandra V, Arkharova Natalia A, Klechkovskaya Vera V, Skorik Yury A
Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy ave. V.O. 31, 199004 St. Petersburg, Russia.
Almazov National Medical Research Centre, Akkuratova str. 2, 197341 St. Petersburg, Russian.
Materials (Basel). 2020 Oct 14;13(20):4558. doi: 10.3390/ma13204558.
A series of novel polysaccharide-based biocomposites was obtained by impregnation of bacterial cellulose produced by (BC) with the solutions of negatively charged polysaccharides-hyaluronan (HA), sodium alginate (ALG), or κ-carrageenan (CAR)-and subsequently with positively charged chitosan (CS). The penetration of the polysaccharide solutions into the BC network and their interaction to form a polyelectrolyte complex changed the architecture of the BC network. The structure, morphology, and properties of the biocomposites depended on the type of impregnated anionic polysaccharides, and those polysaccharides in turn determined the nature of the interaction with CS. The porosity and swelling of the composites increased in the order: BC-ALG-CS > BC-HA-CS > BC-CAR-CS. The composites show higher biocompatibility with mesenchymal stem cells than the original BC sample, with the BC-ALG-CS composite showing the best characteristics.
通过用带负电荷的多糖溶液——透明质酸(HA)、海藻酸钠(ALG)或κ-卡拉胶(CAR)——浸渍由 产生的细菌纤维素(BC),随后再用带正电荷的壳聚糖(CS)浸渍,获得了一系列新型的基于多糖的生物复合材料。多糖溶液渗透到BC网络中并相互作用形成聚电解质复合物,改变了BC网络的结构。生物复合材料的结构、形态和性能取决于所浸渍的阴离子多糖的类型,而这些多糖又决定了与CS相互作用的性质。复合材料的孔隙率和溶胀度按以下顺序增加:BC-ALG-CS > BC-HA-CS > BC-CAR-CS。与原始BC样品相比,这些复合材料与间充质干细胞表现出更高的生物相容性,其中BC-ALG-CS复合材料表现出最佳特性。