Suppr超能文献

分子印迹聚合物微球和纳米粒子。综述。

Molecularly Imprinted Polymer Micro- and Nano-Particles. A review.

机构信息

Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany.

Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain.

出版信息

Molecules. 2020 Oct 15;25(20):4740. doi: 10.3390/molecules25204740.

Abstract

In recent years, molecularly imprinted polymers (MIPs) have become an excellent solution to the selective and sensitive determination of target molecules in complex matrices where other similar and relative structural compounds could coexist. Although MIPs show the inherent properties of the polymers, including stability, robustness, and easy/cheap synthesis, some of their characteristics can be enhanced, or new functionalities can be obtained when nanoparticles are incorporated in their polymeric structure. The great variety of nanoparticles available significantly increase the possibility of finding the adequate design of nanostructured MIP for each analytical problem. Moreover, different structures (i.e., monolithic solids or MIPs micro/nanoparticles) can be produced depending on the used synthesis approach. This review aims to summarize and describe the most recent and innovative strategies since 2015, based on the combination of MIPs with nanoparticles. The role of the nanoparticles in the polymerization, as well as in the imprinting and adsorption efficiency, is also discussed through the review.

摘要

近年来,分子印迹聚合物(MIP)已成为一种极好的解决方案,可用于在复杂基质中选择性和灵敏地测定目标分子,其中可能存在其他类似和相对结构的化合物。尽管 MIP 具有聚合物固有的稳定性、坚固性和易于/廉价合成等特性,但当纳米粒子被纳入其聚合物结构中时,其某些特性可以得到增强,或者可以获得新的功能。大量可用的纳米粒子显著增加了为每个分析问题找到合适的纳米结构 MIP 设计的可能性。此外,根据所使用的合成方法,可以生产出不同的结构(即整体固体或 MIP 微/纳米粒子)。本文综述了 2015 年以来基于 MIP 与纳米粒子结合的最新和创新策略,并通过综述讨论了纳米粒子在聚合、印迹和吸附效率中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/991d/7587572/13bacbf211b4/molecules-25-04740-sch001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验