Suppr超能文献

基于深度学习的自动化诊断系统在糖尿病视网膜病变筛查中的应用:诊断准确性评估。

Screening for Diabetic Retinopathy Using an Automated Diagnostic System Based on Deep Learning: Diagnostic Accuracy Assessment.

机构信息

R&D Department, Fraunhofer Portugal AICOS, Porto, Portugal,

Faculty of Medicine of the University of Porto, Porto, Portugal,

出版信息

Ophthalmologica. 2021;244(3):250-257. doi: 10.1159/000512638. Epub 2020 Oct 29.

Abstract

PURPOSE

To evaluate the diagnostic accuracy of a diagnostic system software for the automated screening of diabetic retinopathy (DR) on digital colour fundus photographs, the 2019 Convolutional Neural Network (CNN) model with Inception-V3.

METHODS

In this cross-sectional study, 295 fundus images were analysed by the CNN model and compared to a panel of ophthalmologists. Images were obtained from a dataset acquired within a screening programme. Diagnostic accuracy measures and respective 95% CI were calculated.

RESULTS

The sensitivity and specificity of the CNN model in diagnosing referable DR was 81% (95% CI 66-90%) and 97% (95% CI 95-99%), respectively. Positive predictive value was 86% (95% CI 72-94%) and negative predictive value 96% (95% CI 93-98%). The positive likelihood ratio was 33 (95% CI 15-75) and the negative was 0.20 (95% CI 0.11-0.35). Its clinical impact is demonstrated by the change observed in the pre-test probability of referable DR (assuming a prevalence of 16%) to a post-test probability for a positive test result of 86% and for a negative test result of 4%.

CONCLUSION

A CNN model negative test result safely excludes DR, and its use may significantly reduce the burden of ophthalmologists at reading centres.

摘要

目的

评估一款基于卷积神经网络(CNN)的 Inception-V3 模型的糖尿病视网膜病变(DR)自动筛查诊断系统软件的诊断准确性。

方法

本研究为一项横断面研究,共分析了 295 张眼底图像,这些图像由 CNN 模型分析,并与一组眼科医生进行了比较。图像来自筛查项目中获得的数据集。计算了诊断准确性测量指标及其 95%置信区间(CI)。

结果

CNN 模型诊断有临床意义的 DR 的敏感性和特异性分别为 81%(95%CI 66-90%)和 97%(95%CI 95-99%)。阳性预测值为 86%(95%CI 72-94%),阴性预测值为 96%(95%CI 93-98%)。阳性似然比为 33(95%CI 15-75),阴性似然比为 0.20(95%CI 0.11-0.35)。其临床影响表现为参考 DR 的术前概率(假设患病率为 16%)观察到的变化,即阳性测试结果的术后概率为 86%,阴性测试结果的术后概率为 4%。

结论

CNN 模型的阴性测试结果可安全排除 DR,其应用可能会显著减轻阅片中心眼科医生的负担。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验