Suppr超能文献

利用电子健康记录开发和验证特定性别的髋部骨折预测模型:一项基于人群的回顾性队列研究。

Development and validation of sex-specific hip fracture prediction models using electronic health records: a retrospective, population-based cohort study.

作者信息

Li Gloria Hoi-Yee, Cheung Ching-Lung, Tan Kathryn Choon-Beng, Kung Annie Wai-Chee, Kwok Timothy Chi-Yui, Lau Wallis Cheuk-Yin, Wong Janus Siu-Him, Hsu Warrington W Q, Fang Christian, Wong Ian Chi-Kei

机构信息

Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.

Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China.

出版信息

EClinicalMedicine. 2023 Feb 27;58:101876. doi: 10.1016/j.eclinm.2023.101876. eCollection 2023 Apr.

Abstract

BACKGROUND

Hip fracture is associated with immobility, morbidity, mortality, and high medical cost. Due to limited availability of dual-energy X-ray absorptiometry (DXA), hip fracture prediction models without using bone mineral density (BMD) data are essential. We aimed to develop and validate 10-year sex-specific hip fracture prediction models using electronic health records (EHR) without BMD.

METHODS

In this retrospective, population-based cohort study, anonymized medical records were retrieved from the Clinical Data Analysis and Reporting System for public healthcare service users in Hong Kong aged ≥60 years as of 31 December 2005. A total of 161,051 individuals (91,926 female; 69,125 male) with complete follow-up from 1 January 2006 till the study end date on 31 December 2015 were included in the derivation cohort. The sex-stratified derivation cohort was randomly divided into 80% training and 20% internal testing datasets. An independent validation cohort comprised 3046 community-dwelling participants aged ≥60 years as of 31 December 2005 from the Hong Kong Osteoporosis Study, a prospective cohort which recruited participants between 1995 and 2010. With 395 potential predictors (age, diagnosis, and drug prescription records from EHR), 10-year sex-specific hip fracture prediction models were developed using stepwise selection by logistic regression (LR) and four machine learning (ML) algorithms (gradient boosting machine, random forest, eXtreme gradient boosting, and single-layer neural networks) in the training cohort. Model performance was evaluated in both internal and independent validation cohorts.

FINDINGS

In female, the LR model had the highest AUC (0.815; 95% Confidence Interval [CI]: 0.805-0.825) and adequate calibration in internal validation. Reclassification metrics showed the LR model had better discrimination and classification performance than the ML algorithms. Similar performance was attained by the LR model in independent validation, with high AUC (0.841; 95% CI: 0.807-0.87) comparable to other ML algorithms. In internal validation for male, LR model had high AUC (0.818; 95% CI: 0.801-0.834) and it outperformed all ML models as indicated by reclassification metrics, with adequate calibration. In independent validation, the LR model had high AUC (0.898; 95% CI: 0.857-0.939) comparable to ML algorithms. Reclassification metrics demonstrated that LR model had the best discrimination performance.

INTERPRETATION

Even without using BMD data, the 10-year hip fracture prediction models developed by conventional LR had better discrimination performance than the models developed by ML algorithms. Upon further validation in independent cohorts, the LR models could be integrated into the routine clinical workflow, aiding the identification of people at high risk for DXA scan.

FUNDING

Health and Medical Research Fund, Health Bureau, Hong Kong SAR Government (reference: 17181381).

摘要

背景

髋部骨折与活动受限、发病率、死亡率以及高昂的医疗费用相关。由于双能X线吸收测定法(DXA)的可用性有限,不使用骨密度(BMD)数据的髋部骨折预测模型至关重要。我们旨在开发并验证使用电子健康记录(EHR)且不包含BMD数据的10年性别特异性髋部骨折预测模型。

方法

在这项基于人群的回顾性队列研究中,从香港公共医疗服务使用者的临床数据分析与报告系统中检索了截至2005年12月31日年龄≥60岁的匿名医疗记录。共有161,051名个体(91,926名女性;69,125名男性)从2006年1月1日至2015年12月31日研究结束日期有完整随访,纳入推导队列。按性别分层的推导队列被随机分为80%的训练数据集和20%的内部测试数据集。一个独立验证队列由来自香港骨质疏松症研究的3046名社区居住参与者组成,这些参与者截至2005年12月31日年龄≥60岁,香港骨质疏松症研究是一项在1995年至2010年期间招募参与者的前瞻性队列研究。利用395个潜在预测因子(来自EHR的年龄、诊断和药物处方记录),在训练队列中通过逻辑回归(LR)的逐步选择以及四种机器学习(ML)算法(梯度提升机、随机森林、极端梯度提升和单层神经网络)开发了10年性别特异性髋部骨折预测模型。在内部和独立验证队列中评估模型性能。

结果

在女性中,LR模型在内部验证中具有最高的AUC(0.815;95%置信区间[CI]:0.805 - 0.825)和充分的校准。重新分类指标显示LR模型比ML算法具有更好的辨别和分类性能。LR模型在独立验证中也取得了类似的性能,其高AUC(0.841;95% CI:0.807 - 0.87)与其他ML算法相当。在男性的内部验证中,LR模型具有高AUC(0.818;95% CI:0.801 - 0.834),并且重新分类指标表明其优于所有ML模型,校准充分。在独立验证中,LR模型具有高AUC(0.898;95% CI:0.857 - 0.939)与ML算法相当。重新分类指标表明LR模型具有最佳的辨别性能。

解读

即使不使用BMD数据,由传统LR开发的10年髋部骨折预测模型比由ML算法开发的模型具有更好的辨别性能。在独立队列中进一步验证后,LR模型可整合到常规临床工作流程中,有助于识别需要进行DXA扫描的高危人群。

资助

香港特别行政区政府卫生署健康与医学研究基金(参考编号:17181381)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bc6/9989633/d24953463182/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验