Suppr超能文献

统计分析分子动力学模拟:提供激动剂依赖性 GPCR 激活的 P 值。

Statistics for the analysis of molecular dynamics simulations: providing P values for agonist-dependent GPCR activation.

机构信息

Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.

Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.

出版信息

Sci Rep. 2020 Nov 17;10(1):19942. doi: 10.1038/s41598-020-77072-4.

Abstract

Molecular dynamics (MD) is the common computational technique for assessing efficacy of GPCR-bound ligands. Agonist efficacy measures the capability of the ligand-bound receptor of reaching the active state in comparison with the free receptor. In this respect, agonists, neutral antagonists and inverse agonists can be considered. A collection of MD simulations of both the ligand-bound and the free receptor are needed to provide reliable conclusions. Variability in the trajectories needs quantification and proper statistical tools for meaningful and non-subjective conclusions. Multiple-factor (time, ligand, lipid) ANOVA with repeated measurements on the time factor is proposed as a suitable statistical method for the analysis of agonist-dependent GPCR activation MD simulations. Inclusion of time factor in the ANOVA model is consistent with the time-dependent nature of MD. Ligand and lipid factors measure agonist and lipid influence on receptor activation. Previously reported MD simulations of adenosine A2a receptor (A2aR) are reanalyzed with this statistical method. TM6-TM3 and TM7-TM3 distances are selected as dependent variables in the ANOVA model. The ligand factor includes the presence or absence of adenosine whereas the lipid factor considers DOPC or DOPG lipids. Statistical analysis of MD simulations shows the efficacy of adenosine and the effect of the membrane lipid composition. Subsequent application of the statistical methodology to NECA A2aR agonist, with resulting P values in consistency with its pharmacological profile, suggests that the method is useful for ligand comparison and potentially for dynamic structure-based virtual screening.

摘要

分子动力学(MD)是评估 GPCR 结合配体疗效的常用计算技术。激动剂的疗效衡量了配体结合的受体与游离受体相比达到活性状态的能力。在这方面,可以考虑激动剂、中性拮抗剂和反向激动剂。需要进行一系列配体结合和游离受体的 MD 模拟,以提供可靠的结论。轨迹的可变性需要进行量化,并使用适当的统计工具得出有意义且非主观的结论。具有重复测量时间因素的多因素(时间、配体、脂质)方差分析被提议作为分析激动剂依赖性 GPCR 激活 MD 模拟的合适统计方法。在 ANOVA 模型中包含时间因素与 MD 的时间依赖性一致。配体和脂质因素衡量配体和脂质对受体激活的影响。先前报道的腺苷 A2a 受体(A2aR)的 MD 模拟使用这种统计方法进行重新分析。TM6-TM3 和 TM7-TM3 距离被选为 ANOVA 模型中的因变量。配体因素包括腺苷的存在或不存在,而脂质因素则考虑 DOPC 或 DOPG 脂质。MD 模拟的统计分析显示了腺苷的疗效以及膜脂质组成的影响。随后将统计方法应用于 NECA A2aR 激动剂,其结果 P 值与药理学特征一致,表明该方法可用于配体比较,并可能用于基于动态结构的虚拟筛选。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a62/7672096/5d42e4cc42c8/41598_2020_77072_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验