Suppr超能文献

基于补丁的脑龄纵向可靠性。

Patch-wise brain age longitudinal reliability.

机构信息

Centre de recherche CERVO, Québec, Canada.

Département de radiologie et de médecine nucléaire, Faculté de médecine, Université Laval, Québec, Canada.

出版信息

Hum Brain Mapp. 2021 Feb 15;42(3):690-698. doi: 10.1002/hbm.25253. Epub 2020 Nov 18.

Abstract

We recently introduced a patch-wise technique to estimate brain age from anatomical T1-weighted magnetic resonance imaging (T1w MRI) data. Here, we sought to assess its longitudinal reliability by leveraging a unique dataset of 99 longitudinal MRI scans from a single, cognitively healthy volunteer acquired over a period of 17 years (aged 29-46 years) at multiple sites. We built a robust patch-wise brain age estimation framework on the basis of 100 cognitively healthy individuals from the MindBoggle dataset (aged 19-61 years) using the Desikan-Killiany-Tourville atlas, then applied the model to the volunteer dataset. The results show a high prediction accuracy on the independent test set (R = .94, mean absolute error of 0.63 years) and no statistically significant difference between manufacturers, suggesting that the patch-wise technique has high reliability and can be used for longitudinal multi-centric studies.

摘要

我们最近提出了一种基于补丁的技术,可从解剖 T1 加权磁共振成像 (T1w MRI) 数据估算大脑年龄。在这里,我们利用来自单个认知健康志愿者的独特数据集,该数据集由 99 个纵向 MRI 扫描组成,在多个地点采集,历时 17 年(年龄 29-46 岁),旨在评估其纵向可靠性。我们在 MindBoggle 数据集的 100 名认知健康个体(年龄 19-61 岁)的基础上,使用 Desikan-Killiany-Tourville 图谱构建了一个强大的基于补丁的大脑年龄估算框架,然后将模型应用于志愿者数据集。结果表明,在独立测试集中具有较高的预测准确性(R =.94,平均绝对误差为 0.63 岁),并且与制造商之间没有统计学上的显著差异,这表明基于补丁的技术具有较高的可靠性,可用于纵向多中心研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e0/7814761/0e42b4120307/HBM-42-690-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验