Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA.
J Diabetes Sci Technol. 2021 Nov;15(6):1326-1336. doi: 10.1177/1932296820973193. Epub 2020 Nov 20.
The capacity to replay data collected in real life by people with type 1 diabetes mellitus (T1DM) would lead to individualized (vs population) assessment of treatment strategies to control blood glucose and possibly true personalization. Patek et al introduced such a technique, relying on regularized deconvolution of a population glucose homeostasis model to estimate a residual additive signal and reproduce the experimental data; therefore, allowing the subject-specific replay of scenarios by altering the model inputs (eg, insulin). This early method was shown to have a limited domain of validity. We propose and test in silico a similar approach and extend the method applicability.
A subject-specific model personalization of insulin sensitivity and meal-absorption parameters is performed. The University of Virginia (UVa)/Padova T1DM simulator is used to generate experimental scenarios and test the ability of the methodology to accurately reproduce changes in glucose concentration to alteration in meal and insulin inputs. Method performance is assessed by comparing true (UVa/Padova simulator) and replayed glucose traces, using the mean absolute relative difference (MARD) and the Clarke error grid analysis (CEGA).
Model personalization led to a 9.08 and 6.07 decrease in MARD over a prior published method of replaying altered insulin scenarios for basal and bolus changes, respectively. Replay simulations achieved high accuracy, with MARD <10% and more than 95% of readings falling in the CEGA A-B zones for a wide range of interventions.
In silico studies demonstrate that the proposed method for replay simulation is numerically and clinically valid over broad changes in scenario inputs, indicating possible use in treatment optimization.
通过 1 型糖尿病患者(T1DM)重放真实生活中采集的数据,将实现针对个体(而非群体)的血糖控制治疗策略评估,从而可能实现真正的个体化治疗。Patek 等人引入了一种这样的技术,该技术依赖于对群体血糖稳态模型的正则化反卷积,以估计剩余的附加信号并重现实验数据;从而通过改变模型输入(例如胰岛素),实现针对个体的场景重播。该早期方法的有效性具有有限的适用范围。我们提出并在计算机上测试了一种类似的方法,并扩展了该方法的适用性。
对胰岛素敏感性和餐吸收参数进行个体模型个性化设置。使用弗吉尼亚大学(UVA)/帕多瓦 T1DM 模拟器生成实验场景,并测试该方法准确重现葡萄糖浓度变化对餐食和胰岛素输入改变的能力。通过比较真实(UVA/Padova 模拟器)和重放的葡萄糖轨迹,使用平均绝对相对差异(MARD)和 Clarke 误差网格分析(CEGA)评估方法性能。
与之前发布的用于重放改变胰岛素情景的基础和推注变化的方法相比,模型个性化将 MARD 分别降低了 9.08 和 6.07。重放模拟具有很高的准确性,MARD<10%,并且在广泛的干预范围内,超过 95%的读数落在 CEGA A-B 区。
计算机研究表明,所提出的用于重放模拟的方法在广泛的情景输入变化下具有数值和临床有效性,表明其可能在治疗优化中得到应用。