Suppr超能文献

基于受人类视觉识别系统启发的 MoS-有机杂化结构的弯曲神经形态图像传感器阵列。

Curved neuromorphic image sensor array using a MoS-organic heterostructure inspired by the human visual recognition system.

机构信息

Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea.

School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.

出版信息

Nat Commun. 2020 Nov 23;11(1):5934. doi: 10.1038/s41467-020-19806-6.

Abstract

Conventional imaging and recognition systems require an extensive amount of data storage, pre-processing, and chip-to-chip communications as well as aberration-proof light focusing with multiple lenses for recognizing an object from massive optical inputs. This is because separate chips (i.e., flat image sensor array, memory device, and CPU) in conjunction with complicated optics should capture, store, and process massive image information independently. In contrast, human vision employs a highly efficient imaging and recognition process. Here, inspired by the human visual recognition system, we present a novel imaging device for efficient image acquisition and data pre-processing by conferring the neuromorphic data processing function on a curved image sensor array. The curved neuromorphic image sensor array is based on a heterostructure of MoS and poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane). The curved neuromorphic image sensor array features photon-triggered synaptic plasticity owing to its quasi-linear time-dependent photocurrent generation and prolonged photocurrent decay, originated from charge trapping in the MoS-organic vertical stack. The curved neuromorphic image sensor array integrated with a plano-convex lens derives a pre-processed image from a set of noisy optical inputs without redundant data storage, processing, and communications as well as without complex optics. The proposed imaging device can substantially improve efficiency of the image acquisition and recognition process, a step forward to the next generation machine vision.

摘要

传统的成像和识别系统需要大量的数据存储、预处理和芯片间通信,以及具有多个透镜的抗像差的光聚焦,以便从海量光学输入中识别物体。这是因为独立的芯片(即平面图像传感器阵列、存储设备和 CPU)与复杂的光学元件相结合,应该独立地捕获、存储和处理大量的图像信息。相比之下,人类视觉采用了一种高效的成像和识别过程。在这里,受人类视觉识别系统的启发,我们提出了一种新颖的成像设备,通过将神经形态数据处理功能赋予弯曲的图像传感器阵列,实现高效的图像采集和数据预处理。弯曲的神经形态图像传感器阵列基于 MoS 和聚(1,3,5-三甲基-1,3,5-三乙烯基环三硅氧烷)的异质结构。由于在 MoS-有机垂直堆叠中存在电荷俘获,弯曲的神经形态图像传感器阵列具有光触发的突触可塑性,表现为准线性时变光电流产生和延长的光电流衰减。弯曲的神经形态图像传感器阵列与平凸透镜集成,从一组嘈杂的光学输入中获得预处理图像,而无需冗余的数据存储、处理和通信,也无需复杂的光学元件。所提出的成像设备可以显著提高图像采集和识别过程的效率,是迈向下一代机器视觉的一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/311d/7683533/be1807c2426f/41467_2020_19806_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验